Master Thesis

The Well-Posedness for Semirelativistc Systems

H312A084-6 Kazumasa Fujiwara

Department of Pure and Applied Physics
Waseda University

Supervisor: Tohru Ozawa

Submitted: 02/06/2014






Abstract

The local well-posedness for the Cauchy problem of systems of two types of
semirelativistic equations in one space dimension is shown.

The first system of semirelativistic equations is shown to be well-posed in the
Sobolev space H® of order s > 0. We apply the standard contraction mapping
theorem by using a Bourgain type space X*°. We also use an auxiliary space
for solutions in the critical space L? = H". We show the conservation law of
charge in the framework of Bourgain spaces without approximation procedure
for local solutions. We give the global well-posedness by this conservation law
and the persistence of regularity.

The second system of semirelativistic equations is shown to be global well-
posed in the energy space H'Y2. In this case, the gain of regularity from the
Bourgain method is not sufficient. Then, we apply the compactness argument
with the energy conservation law. We use the charge and energy conservation
laws to construct solutions. The continuous dependence of the solutions on time

and initial data is also given.
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Part 1
Introduction

We study time local and global well-posedness of the following Cauchy problem for a system of
semirelativistic equations

10 £ \/m2 — A u = \uv,
10w & /m2 — A v = pu?, (NSR)
(u(0),0(0)) = (uo, vo),

where u, v are complex valued functions of (t,x2) € R x R, 9, = 9/0t, my,,m, € R, \,u € C,
A = 9? = (9/0x)* is the Laplacian in R, and @ is the complex conjugate of u.

The purpose of this paper is to prove the global existence of finite charge or finite energy so-
lutions to (NSR). To motivate our problem, we revisit three equations with regard to relativistic
quantum mechanics: the Klein-Gordon, Dirac, and semirelativistic equation. The Klein-Gorden
equation is the first model to describe relativistic quantum particles. However, since the Klein-
Gordon equation is the second order in time, even the free Klein-Gorden equation does not
admit a positive definite density. The Dirac equation is the second model of relativistic quan-
tum particles. The free Dirac equation has the conserved probability density. However, the
energy of the free Dirac equation is not positive definite for some initial data. The free semirel-
ativistic equation avoid these definiteness problems — namely, it has the conserved probability
density and energy whose sign is independent on the initial data. The semirelativistic equation
is introduced form the Klein-Gordon equation by a formal factorization such as

2

—+m2—A:—(i%iM)(i%$m>.

Since v/1 — A is nonlocal operator, the semirelativistic equation had not been studied well.

In these days, nonlinear semirelativistic equations has been studied in mathematics. For
example, a semirelativistic equation with the Hartree type nonlinearity are regarded as a model
of Boson stars and the well-posedness for the Cauchy problem has been studied. See [4,7,15] and
the references therein. The Semirelativistic equation with power nonlinearity, which we study
in this article, is regarded as a model of interactive relativistic quantum particles. Borgna and
Rial studied the Cauchy problem for a single semirelativistic equation with cubic nonlinearity
in [3] and they proved the existence of local solutions in H* with s > 1/2, where H® = (1 —
A)~*2L2(R) is the usual Sobolev space. The method of their proof depends essentially on the
Sobolev embedding H® < L. In the case where s < 1/2, however, the method loses its
meaning because the uniform control by H® norm breaks down. In the limiting case s = 1/2,
a Vladimirov type argument [20, 21, 24] implies the uniqueness of weak solutions constructed
by a compactness argument, see [14]. Meanwhile, we remark that Strichartz type estimates are
not sufficient for a contraction argument unless the uniform control by H® norm is available. A
similar situation happens in the case of nonlinear Dirac equations in space dimensions n > 2
2,6,16-18]. We neither can not apply the Delgado-Candy trick which is the special technique
for the Dirac equation in one dimension. This technique depends on algebraic structure of the
Dirac equation to divided solutions into free solution part and uniform bounded part. However,



the semirelativistic equation does not have the algebraic structure. See [1,19].

Therefore, it is natural to introduce the Bourgain method or compactness argument to study
(NSR) in H® with 0 < s < 1/2. The system (NSR) is regarded as a semirelativistic approxima-
tion of the Schrodinger system

10 + LAy = Auw,

2my,

" (NS)
100 + 5 2 Av = pu?,

v

where 0; € {—1,1}. We refer the reader to [10-13] for recent results on the Cauchy problem
for (NS). In the case of the Cauchy problem in L? x L? for (NS), the signs of o, oo are not
essential [12], while in this paper the combination (oy,02) = (1,—1) or (—1,1) is essential in
(NSR) in connection with the quadratic interactions on the right hand sides as far as one tries
to apply the Bourgain method in L? x L% Because of this, we divide (NSR) into two cases:

10U + \/mﬁj u = A\uv,
(NSR1) i — /m2 — A v = pu?,
(u(0), v(0)) = (uo, vo).
and
O+ /m2 — A u = v,
(NSR2) 0w+ \/m2 — A v = pu?,
(u(0),v(0)) = (uo, vo)-

We state our main results. For a,b € R, a Vb and a A b are the maximal and minimum,
respectively. For norm spaces X and Y, (z,y) € X xY,and z € X NY,

[z, y) : X x Y| =[la: X[+ ]ly: Y], [z: X0Y[=z: X[ V[z:Y].

Theorem 1. Let s > 0 and let (ug,vo) € H® x H®. Then, there exists T > 0 and a unique pair
of solutions (u,v) € C([0,T],H® x H®) to (NSR1) . For this pair of solutions, we define the

mazximal existence time of solutions T(s) as

T(s) = T(u, vo, 8) = sup {T >0 sup ([u(t) : H|| + [[o(t) : H])) < oo}.

0<t<T
Then, T(s) = T(0).

Theorem 2. Let \ and p satisfy X = cu with some constant ¢ > 0. Let s > 0. Then, the
solutions of Theorem 1 extend globally.

Theorem 3. Let \ and p satisfy A\ = ¢ with some constant ¢ > 0. The Cauchy problem
(NSR2) has a unique pair of solutions (u,v) in C(R, HY? x HY?) N CY (R, HY/2 x H~1/2) for
indtial data (uo,vo) € HY? x HY2. In addition, let (ugn, Vo.n)nez, De a sequence in HY2 x H'/?
which converges to (ug,vo) in HY? x HY2. For each n, let (u,,v,) is the pair of solutions for



the initial data (ug ., von). Then, for any T > 0,
H(u,v)—(un,vn):C([O,T],Hl/Qle/Q)H — 0 as n — 0o.

We introduce some notation to be used below. For s € R, H* = (—A)"*/2L%(R) is the
homogeneous Sobolev space of order s. For a function u of two variables (time and space), §.[u]
denotes the Fourier transform with respect to the space variable z and u denotes the Fourier
transform with respect to the space-time variables. We also write f for the Fourier transform of
a one-variable function f. For m,t € R, U,,(t) = exp|—itv/m? — A] denotes the free propagator
for the semirelativistic equation

10w — vVm?2 — Au = 0.
Then, the Cauchy problem for the single equation
i0u FVm? — Au = f(u), (SSR)

with initial data u(0,-) = ug is rewritten in the form of the integral equation

u(t) = Up(£t)ug — i /0 Uy (£t — ) f(u(t))dt,

where f is a complex valued function. Let (-,-) be the usual L? inner product. When \ = cu
with a positive constant ¢, we define the charge @ of (NSR) as

Q(u,v) = ||u: L2H2 +cfv: L2H2.

The rest of this paper is organized as follows. In Part II, we show Theorems 1 and 2 by the
Bourgain method. In Part III, we show Theorem 3 by a compactness argument. From Part IV,
we collect recent works of the author and the supervisor.



Part 11
Study of (NSR1)

1 Introduction

In this part, we prove Theorems 1 and 2. Our proof is based on a Bourgain norm in X*°. We
also use the auxiliary norm in Y* defined below especially for the critical case s = 0. We give
several types of bilinear and trilinear estimates by means of those norms, which are applied to
the arguments of the well-posedness and the persistence of regularity 7'(s) = T(0). Particularly,
we prove that the H*® norms of the solutions never blow up before L? norms may blow up.

We also observe that it seems difficult to close our contraction mapping argument by using
only X*b norms in the critical case s = 0 and to apply this method to (NSR2) . We prove the
fact that the bilinear estimate with X*° norms fails in each case. If s > 0, we give a simpler
proof which ensures the contraction argument depending exclusively on X*° norms.

Under the constraint A = ¢z with a positive constant ¢, we show the following conservation
law of charge— namely, the conservation law of the L? norm :

Q(u(t), v(t)) = Q(uo, vo) (I1.1.1)

for any t € R. To prove (I.1.1), we apply the argument by one of us [22], which need not to
take smooth approximations of solutions. Our proof uses only a weak regularity of solutions
guaranteed in the corresponding Bourgain space. All the calculations for (II1.1.1) make sense on
the basis of the trilinear estimate given by Proposition 3.11 below. Then, we have the Theorem
2, since T'(s) = T'(0) by Theorem 1.

For m >0, a,b € R, Ty € R, and T > 0, we define Bourgain norms

Y

s Xstall = (" (& Var 7€) tr ) s 1222

fu = X" [To, To + 71|

:inf{’

lu = X0 [To, To + 71|
= inf {‘ u' anbiH ' (t,x) = u(t,x) on [Ty, Ty + T X ]R} :

where (z) =1+ |z|, and auxiliary norms

1oy H 't x) = u(t,z) on [Ty, To + T] x R,
U Amal] supp «' C [Ty — 2T, Ty + 2T x R ’

Y

-1
o Vil = 0" (r & var T @) s 22t

Ju: Yy L [To, To + T
, , ' (t,x) = u(t,x) on [Ty, Ty + T| X R,
= inf ||u :Yn‘ziH ; ,
’ supp v’ C [Ty — 2T, Ty + 2T x R



We note |ju : X;biH = |u : X;f;H and |lu : Yy || = |l : Y | for any s,b,m € R. We
abbreviate these spaces as : X" = ng’bi, Y =Yy .. In our proof, the following spaces are basic
for the pair of solutions (u, v):

Xt (T, Ty + T) = X>[Ty, To + T) x X3°[Ty, Ty + T,
KTy, To + T) = X*V[Ty, To + T) x X' 2Ty, Ty + T).

We use % *°[Ty, Ty + T for the proof of Theorems 1 and 2. The space X'*°[Ty, Ty + T is used
for a simpler proof of the local well-posedness for s > 0 in Section 6. Let ¢ be a cut off function,
namely, a smooth function with 0 < ¢ < 1, ¢(t) = 1 if [¢| < 1 and ¢(t) = 0 if |[¢| > 2. For
T >0, ¥p(t) = p(T711).

Remark 1.1. Fors,b >0, T > 0 and m,Ty € R, function space an’f’i [Ty, To + T is a quotient
of a closed linear subspace of a weighted L*(R?) by another closed subspace. Since for s,b > 0,
functions whose support is restricted on a subset of R x R compose a closed linear subspace
on X,f;lfi because L*(R?) is continuously embedded into them. Then, ||- : Xf,fi To, To + T1|| is a

quotient norm and Xf,fi [To, To+T1] is a Banach space as long as for s,b > 0. However, we use the

notation of ||- : Xf,fi[To,To + T even if b < 0. We also use the notation ||- : Y, . [To, To+ Tl
even when ||- : Y,y [To, To +T1|| is only a seminorm.

We give a brief outline of the remainder of this part. We prepare the linear and bilinear esti-
mates in Sections 2 and 3, respectively. The reason why the Bourgain method is not applicable
to (NSR2) is also shown in Section 3. We give the proof of Theorem 1 in Section 4. We describe
the proof of the L? conservation law (II.1.1) and Theorem 2 in Section 5. We give a simpler
proof of the local existence in the case s > 0 and we show that the bilinear estimate fails with
s = 0 in Section 6.

2 Linear Estimates

Here we collect some basic estimates. We consider the single equations
0w FVm? — Au = f(u), (I1.2.1)

where u and f are complex valued functions. The Cauchy problem for (I1.2.1) with initial data
u(0, -) = up is rewritten in the form of the integral equations

u(t) = Uy (£t)ug — z/o Up (£(t =) f(u(t'))dt'.

To state the proof of our theorems, the following basic estimates are necessary.

Lemma 2.1 ( [9, (2.19)]). Let m € R. For any s,b >0 and uy € H®,

[ () U (Ft o = XpTell = 1 = HO|[fuo = H|. (11.2.2)



In addition, for any 0 <T < 1,
[ (YU (Et)uo = Xt )| S lluo < H||. (I1.2.3)

proof. The equality (I1.2.2) is easily seen. The estimate (I1.2.3) follows form scaling invariance
of H'/2. Q.E.D.

Proposition 2.2 ( [9, Lemma 2.1.]). Let m € R, 0 <T <1 and let s > 0. Then,

for Fre X 1/QF‘lei In addition, let 6 > 0 and b satisfy —1/2 <b—1+§ <0<b. Then,

Lemma 2.3 ( [9, Lemma 2.2.]). Letm € R. If F € Y} ., then [ Un(-—t)F(t')dt' € C(R : H®)
and it satisfies the estimate

SIF X520yl (11.2.4)

() / Un(( — ) E(E) dt' - X3

STF - X5 (I1.2.5)

() / Un(&( — O)F() i’ X5,

for F € XSb 1+,

SIE Yo Ll

/ Un(( — ) F(#)dt : C(R : HY)

0

To extract a positive power of T, we use the following lemma.

Lemma 2.4 ( [9, Lemma 3.1.]). Let s € R, 0 < b <V, T > 0 and let f € X3¥ satisfy
suppf C [-T,T] x R. Then,

I X2 S TODN 7 X2,
where
b —b it b <1/2,
Yy, b) =< b —b+e it v =1/2,
1/2—=0b/20 if ¥ >1/2

with € > 0 sufficiently small.

proof. By the Holder inequality,
H<s>s (r 16" T LELEH

~ 1-b/b ey
s . T 26 /(b —b) 720"/ (b —b)

b/v H Hl b/v

A

(©)° f: 2L



If ¥ > 1/2, then
14€)" Sl f] - LELE| < T2 (€)" Bulf] : LELYS|
<T'Y2)(¢)° [ ZLY|
ST f = X3
Moreover, if ' < 1/2, then by the unitarity of Uy and the Sobolev embedding,
146)" B lf) - LELE]|
= [1{€)° SuUn(£t) f] + LELY|
STV (€) FulUo(£0) f] - L2LY/ 072
STV BullUo(£t) 1] : LEHY || =TI - X3

In the case ' = 1/2, for any € > 0,

14€)° Folf] - L2 S TV || f 2 X2V || < 7/ || o x3Y2

Q.E.D.

3 Bilinear and Trilinear Estimates

In this section, we derive nonlinear estimates for lefi and Y . by the method originally
proposed in [23]. Due to the next lemma, we may put m, = m, = 0 with respect to the
Bourgain and auxiliary norms without loss of generality.

Lemma 3.1. For any m, M € R, Xﬁ;l”i o~ Xf\’j?i, Y L= Yy, with equivalent norms.

proof. The lemma follows from the following inequality;

<T:|: m2+£2> <T—|— m2+§2>—<7+ ]\/[2+§2>

<1+
<T:|: M2+§2> <7‘j: M2+§2>
|7 £ /m?2+ &2 — |71 £ /M2 + &2
— 14+
<7':|: M2+§2>
<1+ |m— M|
for any 7 € R. Q.E.D.

In addition, we need the following bilinear estimates for Sobolev norms.

Lemma 3.2. Let o, 3,7 € R. Then, the inequality
luv: H=O|| S Jlu: HP|[[|v : HY|



holds if and only if

a+pB+v> and a+p8, B+v, v+a>0

N | —

or

1
a+6+7>§ and a+f8, B+v, y+a>0.

Lemma 3.3. Let p > 1 and let o, 8, v > 0 satisfy o« + 8+~ > 1/p. Then, there exists a
positive constant C' such that the inequality

(7 +60) " frg: L2 < Cll T+ 6)7 f: L2 (T +85)" g = L]
holds for any real numbers 01, 02, 03 and any f, g such that all the norms on the right hand
side are finite.
proof. By the Holder and Young inequalities,
7+ 807 £ =gt L2 5 [ 5 g 2P/
S +82)" 1) 217 + 82 () L2

from which we obtain the lemma. Q.E.D.
Lemma 3.4. Let p and « satisfy p > 1 and 0 < o < 1/p. Let 5,7,k satisfy 0 < 3,7,k < 1/2
and a+ B +~y+ k> 1/p+1/2. Then, there exists a positive constant C' such that the inequality

H<T—|—(51>7af>kg* h: L’T’H

<SC{m+6)" f L2 (r+85)" g = L[| (7 + 6)" b s L2

holds for any real numbers 01, 09, 03,04 and any f, g, h such that all the norms on the right hand
side are finite.

proof. Let e =a+ 5+ +r—1/p—1/2. By the Holder and the Young inequalities,

||<T—|—(51>7af*g>kh:L£H

Sfxgxh: LM

S L2 g = b 17

S L2 lg = LB s L]

SN +062)7 f o L2 (74 65)7 g : L2|[|| (7 +61)" h: L],



where

1 1 73
—= a4+ ——
PP at+f4y+n
1 1 €
_:_+6_5—’
Py 2 a+B+v+k
1 1 1
—:—+1——,

Pp3 1 P2

1 1 €
_:_+7_ 1 )
Py 2 a+B+y+k
1 1+ KE

_ = = K——
ps 2 at+pf+v+k

from which we obtain the lemma. Q.E.D.

For s > 0, we define A(s) as

0 if <1/2
As) = i s <1/2, (I13.1)
s—1/2+¢ if s>1/2,

where € > 0 is sufficiently small. Here we state our main nonlinear estimates.

Proposition 3.5. Let s >0 and 0 < p < 1/2. Then, the inequality

Huv : Xi_1/2 ny;

< Hu : Xi(s)’l/Q

s,1/2—
Hv X /2=p

s s

Hv : Xi’l/Q

(I1.3.2)

holds for any u € XM2 v e X5V2,

We remark that the regularity A(s) in the both terms of u on the right hand side is less than
the regularity s on the left hand side. Therefore, the estimate (I1.3.2) with s > 0 does not
follow directly from (I1.3.2) with s = 0 and the Peetre’s inequality: (£)*" < ({(€ —n)* + (n)*)
for s > 0. We can exchange the smoothness with respect to the space-time variables into the
smoothness with respect to the space variable by using (I1.3.3) from the nice combination of
signs &£ in (I1.3.2). This technique is found in Lemma 5 of [23].

The symmetry inequality

O [ P [

UL Xf’_l/Q ny?

holds by (I1.3.2) with taking complex conjugate of v and v.



proof. It is enough to show

and

Let

L vs,—1/2
Huv : XY H

< [l 200

HU : Xi’l/z

1/2—

n H“ L X120

||u1) : YJ:H < Hu . X612

1/2—
Hv:Xf /2=p

n Hu L xA@1/2-

Hv . X172

M(r,g0m) = |r+Igl| v |r = o —lg=al| v |o = Inl|

Then, the triangle inequality implies

€] 416 —nl + |n| <3M(7,€,0,1). (I1.3.3)

Also, we decompose the integral region as follows

Av={(mom ;s Mg o =|r+é|}.
A ={(r&0m) s M(rg o) = |r— o — ¢ —nl|},
Ay ={(rgom; M(r.&om =|o—lnl|}.

(a) X norm estimate with s > 0.

By the Minkowski inequality,

H<g>5// (r 4+ 1€)) ™ xa, U(T — 0, —n) T(o,n) dody : L2L?

Y

sH/&rlﬂh@mwm:x

where
Li(&m) = H/ ‘5(7 —0,§—n) (o, n)‘ do: L7

s =t —nn e —m 22

|7 = 25, m) : 22

by Lemma 3.3. Since
1
——s+A(s)+s> 5

——s+A(s) >0,

10



and Lemma 3.2,

H/@flﬂh@mwm:@

|
Similarly, for 7 = 2,3
@ [ 16", e =6 = ) o) dod s 2222
5”/@?*”@@m>@z@

where
B(en) = |+ 1) [ (=0 = lg )"

(=& = )P U(r, € —n) : L2

(7 — 0.¢ =) o)) do: L2

| =ity - L2

AN

(e = ||+ 1) ™" [ o = )"
S = te = e am e —my 22| || = 1an o - L2

by Lemma 3.3. Then, for j = 2,3, we obtain by Lemma 3.2

|z

o] | L | e |

it = 0,6 —n) Wo.n)| do: 12

(b) X norm estimate with s = 0.

By Lemmas 3.2 and 3.3,

0,—1/2
Huv s X7 /

<2/

‘u . x 0172

T L€ ) dn - L

AN

I

Hv  xo

o o o

where [, I and I3 are defined as in the case (a).

11




(¢) Y norm estimate with s > 0.

By the Minkowski inequality,

@ [ 1) v 70 = o6 = ) T doans 2222

)

5”/@&*”A@m>m:@

where
Ji(&m) = |[{7+ ]£|)_1/2/ ’6(7' —0,&—n) 5(0,77)’ do: L}

S| —tg=ay e —m L2 | = s - 2

by Lemma 3.3. Then, we obtain

H/(@H/z Ji(&,m) dn : L

< Hu : Xi(S)yl/Q—p

HU : Xf’l/Q

by Lemma 3.2. Similarly, for j = 2,3,

Hf/“*KW*Mwﬂf—mi—mﬁwmwwm:ﬁm.

9

5”/@f1”4@mwm:@

where
&@mw:<r+my{/w—a—M—nwﬂ

S\ — 1€ =P a(r, e —n) : L2

u(r — o, —n) ﬂ(a,n)) do: L}

|47 = >0 ey < 22

Y

T = [ +16h7" [ o = fitr = 0.6 ~ nyito,n)| dor s L

S\ =g —n) PP alr e —n) - L2

47 =17 m) - L2

Then, we obtain

Hv D G

< [lu: 20

I H“ L X120

”v : Xi’1/2

from Lemma 3.2.

12




(d) Y norm estimate with s = 0.
By Lemmas 3.2 and 3.3,
luw = Y|

3
1/4 —1/4

Jj(&m) dn : L

‘u . x0:1/2

<

~Y

0,1/2—
Hv X /2=p

o x00

where Ji, Jo and J are defined as in the case (c).

Y

HU . x0:1/2

Q.E.D.
Remark 3.6. Proposition 3.5 is almost optimal. See Proposition 6.1 and Corollary 6.3

Remark 3.7. The trick of exchanging smoothness is not applicable to the bilinear estimates
X XPXEY and XU XPPXEY which one needs to use the Bourgain method for
(NSR2) . In addition, the bilinear estimates Xi’b Loy X% in and X" — XU X5 fail for

_ Ay
s> 1/2 and any b € R. For any s < 1/2 and b € R, let iy = (7 £ &)7071E) 7571/ 2 log(£)~3/4.
Then, us € X3 and

luyus Xi’bH = Ju_uy : Xib” =00

These estimates are calculated as follows:

Juuy X-s#b|

|
(€)°(r + Je)! / / (r— o+ |6 — ) o + )

A& —n) T log(€ — m) A (n) P log ()~ *dodn : LL?

_H (r+ &) // (r—o+&—nHo+n™

(€= m) 7P log(€ — ) )T P log(n) T dodn < sy i 1crcein
3
. H@‘”Q log(€)™/* ) og{a) ¥V dn s L2,
0

2 H<£>_1/2 10g<§>_1/2 : L§22

= 00,

13



s - X2
@+ [ [t =+ ie=a) o~ 1)
(&= m) " P log{e —m) )~ P log )~ dodn : L2L?
+1
> H (T +€&)" 1/ /17 (T—o+&—n)Ho+n)"

(& =) P log (€ — n) ¥ )T P log (n) T dodn + Lo Ly <pce i

= 0Q,

3
> H<s>1/2 (€)' [ ) ol 12,

and the remainders are estimated similarly.

Corollary 3.8. Let s >0, 0<p<1/2 and let T > 0. Then,

‘ w X370 YIIST? ||u: Xf;(s)’lm Hv : X:SF’I/2 (I1.3.4)
for any u € )(j’\F(S)’l/2 and v € Xs 2 such that supp u, supp v C [-T,T] x R.
proof. By Proposition 3.5 and Lemma 2.4, we obtain (I1.3.4).
Q.E.D.
The following bilinear estimate shall be used in Section 6.
Proposition 3.9. Lete >0, p >0, b, € R satisfy
1
1+b—06> §+€+P,
b+d+e, p+o+e<1,
b— €, b— P Z 07
s+e>1/2.
Then,
Huv X5 1+6H < Hu : Xi’b ’ Hv ; XfF’b_p + Hu : Xi’b_p Hv : Xib ) (I1.3.5)

s,b
Jor any u,v € X7
proof. We use the same notation as in the proof of Proposition 3.5. Since [£], | — 7], |n| <
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3M(t,&,0,n) and Lemma 3.3,
H@V[/v+mw*“an< 0.6~ 1) Boun) dod : 2L

SH/@V%“@—nY”Wm*BKum:@ |

where

K1:

- ’§‘>b—1+6+6/|17(7' — 0,6 —n) (o) do: L?

S| =te=arrame—m 2| |- e L2

Similarly, for j = 2,3
H // (T4 €)1 xa, U — 0,6 =) D(o,n) dodn : L2L;

5”/@ff“@—n>“NmE“me:@ :

where
Ko = ||(r+16)" [ (r = l6 = a7 = 0.6 — ) Tom)] dor L2

(r=le =l atrg —n): 2| |r = wmm L2

AN

K= ||[{(t+ |§|>b_1+6/ [u(t — 0,6 —n) (t—n|)*0(o,n)| do: L?
S = 1= u(r, & —n) - L2|| |[(r = [nl)* (r,m) : L

We obtain (II.3.5) by Lemma 3.2.

Q.E.D.

Remark 3.10. b=1/2, 6 =0, ¢ = 1/2 are the only numbers that ensures (11.3.5) for s = 0.
See Proposition 6.1.

The next trilinear estimate shall be used to prove Theorem 2 in Section 5.
Proposition 3.11.

(7)o — p,& — n)v(p, m)w(t —0,€) : LLL{LLLL}||

<H L X2 H X012 H Dok (11.3.6)

for any u,v, wEXOl/z.
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proof. Let

N(7,§,0,p,€)

=‘T’V)U—pi|£—n|‘vlpilnl(v‘T—Oilﬂ‘-

Then, we have |§] + |€ — 1| + |n] < 4N. We also separate the integral region as follows

B ={(ro.&pm s N(r&o.pe) =
By = {(ﬂ@@ﬂﬂ?) i N(7,€,0,p,€) =
By={(r.0,&.p,m) i N(r.€,0,p,2) =
By = {(Taa,é,p,n) N(7,€,0,p,€) =

By Lemmas 3.2, 3.4 and the Holder inequality,
HXB1 <T>

< |7 )

AN

My~
H (r & )25, m) - 22 LA(LY)

H 01/2 H . x01/2
AL

01/2

AN

Moreover,
HXBQ <7_

S ey o

< o m]
H (& )25, m) - 22| ALY
<l - 01/2 H 01/2 H -Xilm

The other integrations are estimated similarly.

4 Proof of Theorem 1

Yo — p, & — n)u(p, n)w(r — 0,€) :
—pElE -
wo—p, & —n)o(p,nw(t —o,8) : LLL;L L L, |
(& =)' Pu(r, e =) : L

|(r 160 w6 - 2212

|}
0—pi|€—n\‘},
o £ In|}.

T—U:I:]ﬁ\‘}.

o = p, & =n)o(p,n)yw(r — 0,8) : LLL{LLLL Ly |

(o — p,& = n)o(p,n)w(r — o0,€) : LEL¢LLLLL)||
Vil e = a2 aiCr g ) s 22

[ £ 160 w(r e - 222

LILeLLLIL |l

o pn

Q.E.D.

We separate the proof for the existence and for the persistence of regularity.
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4.1 Proof of Existence

Let s > 0, (ug,v9) € H* x H* and let 0 < T < 1. We define ¢ : (u,v) — (P1(u,v), Pa(u,v)) as

(D1 (u,v))(t) = Up, (—t)ug — z'/\/ Up, (t =) u(t') v(t")dt,
° (IL4.1)

(@al00)0) = U, (00 =it [ U (0= ) ult
We also define a metric space
B*(R,[0,T]) = {(u,v) € % =1200,T] ; | (u, v) :%S’I/Q[O,T]H < R}
with metric
d*( (ug,v1), (ug,v9) )= H(ul,vl) — (ug,v2) :968’1/2[0,T]H
= ‘ Uy — Uy : Xi’l/Q[O,T]H + [|vg — vy : Xi’l/Q[O,T]H :

We see (B*(R,[0,T]),d*) is a complete metric space for any s > 0. We prove that ® is a
contraction map on B*(R,[0,7]) for sufficiently large R and sufficiently small 7.

Let (u,v) € B5(R,[0,T]) and let (u/,v') € X*'/* x Xi’lm satisfy

v =wu on [0,T] xR, suppu C[-2T,27] x R,
v =v on [0,T] xR, supp v’ C [-2T,2T] x R.

Then, ®;(u,v) and ®o(u,v) are defined on [0,7] x R. Moreover,

Yr(t) /0 t Up, (' —t) /(') V'(t) dt' = /O t Up, (8 =) u(t') v(t))dt,

t t
r(t) / U, (t —t") 0/ (#')? dt’ = / U, (t — 1) u(t')? dt’
0 0
on [0,7] x R and their supports are contained in [—2T,27T] x R. Then,

Hfbl(u,v) L X200, 77

gHuMewwyx?QMTM+Hy/Umah~wmwwwwﬂxﬁﬁaﬂ”
0
By Proposition 2.1,

a1 w0 = X27200, 71| < e (O (1) 0 = X2 < Yo - ).
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By Proposition 2.2 and Corollary 3.8,

/ Uy (¢ =) W@ o(t') e’ = X*[0), T]H

0
<inf ||er() / U (¢ — ) W) () dt’ - X5V
u’ v’ 0
S inf |/ o' Xy
< inf T? ‘ u s X ‘ v Xi’l/2

ST

u: Xf’l/z[O,T]H Hu : Xil/z[O,T]H < TPR?

for 0 < p < 1/2. Similarly,
H@g(u,v) : Xi’l/Z[O,T]H
< HUmv(—t) Vo : Xi’l/Q[O,T]H + H)\/ Uy, (' — ) u(t))2dt’ - Xf’1/2[O,T]H
S llvo = HY|| + T R?. 0

This implies that ® is a map from B*(R,[0,T]) into itself for some R and T. Moreover, let

(uj,v;) € B*(R,[0,T]) for j = 1,2 and let (u},v}) € X° x X7 satisfy

~

u; =u; on [0,T] xR, supp u; C [-2T,27] x R,
-=w; on [0,T] xR, suppv; C [-2T,2T] x R.

~ <

<

We have

H<I>1(u1,vl) — (I)1<U2,U2) . Xi’l/Q[O,T]H

< inf {H W, —uy) v, : X" nye

A A -
Ul,u27’l}1,7)2

- HT’Z W, =) X3Py

)

0 . /. 5,1/2 / _ !, 571/2
<T lmlf/{‘vl.XJr Uy — Uy + X7
Uy —Uz,Uy
o . ! . 871/2 / _ !, 571/2
+T /1rllf/{)u2.X, U] — vy 1 X
Ug,Vy — Uy

5 T°R H(uhUl) - (u27v2) : %s’l/Q[OaT]” :
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Similarly,

H(I)Z(Ulyvl) — ®y(ug, v3) : Xil/QH

ST inf ||u) +uy X2 ‘ uy — uy X2
Uy,Us
<77 |y +us - X5V, T]H ’ Uy — U : Xi’l/Q[O,T]H

S.z TR H(u17u2> - (U17v2) : %8’1/2[07T]H :

Therefore ® is a contraction map on B*(R, [0,7]) with sufficiently small 7.

4.2 Proof of Persistence Regularity

Let s > 0 and let (ug,v9) € H®x H*. By Theorem 1, we have the maximal existence time 7'(s") >
0 for 0 < s’ < s such that there is a unique pair of local solutions (u,v) € C([0,T(s")), H* x H*).
Since s > A(s), we have T'(s) < T'(\(s)), where A(s) is as in (I1.3.1). We show that if T'(s) <
T(A(s)), then

sup |[(u,v)(t) : H® x H?|| < o0, (I1.4.2)
t€[0,T°(s))

namely, T'(s) = T(A(s)) from the point of view of a blow-up alternative argument. Let T3 =

1A w For sufficiently large C, we define R; > 0 as follows

Ry =2C (1 +  sup |[(u,0)(t) s HM® x H’\(S)H) < 00.

te[0,T(s)+T1]

We have 0 < Ty < T; such that for any 0 < 7o < T'(s) and any 0 < T' < Ty, ® is a contraction
map on B 9)(Ry, [Ty, Ty + T)). Let 0 < p < 1/2, and let (uj,v;) € B*®)(Ry, [Ty, Ty + T)). Let
u; € Xi’l/Q,u;f € Xi(s)’l/Q,v; € Xi’l/Q, (S Xj\r(s)’l/2 satisfy

u; =wu; on [To,To +T] xR, supp w; C [To — 2T, Ty + 2T] x R,
uj =u; on [To, To+T] xR, supp uj C [To — 2T, To + 2T] x R,
[Ty — 2T, Ty + 2T] x R
[ | xR

v = Uu; on [To, TQ + T] X R, supp 'U;-/ C T() — 2T, TO + 2T

vi =wv; on [Ty, To +T] xR, supp vj C

19



for j = 1,2. Then, by Proposition 3.5
H<I>1(u1, Ul) . Xi’l/z[T(), TO + T]H

<

Un(~t)u(Th) : X[, Ty + 7|

‘

A / Un(t' — Yur () 01 () dt’ 3 X*YV2(T, TO+T]H
To

< Cllu(Ty) : H?|| + CT” inf

U1,V

uy Xi(s)’l/QH ‘

v} :Xfr’l/QH

< Cllu(Ty) : H?|| + CT? Ry

v XSV, Ty +T]H .
Similarly,
$,1/2
H@Q(ul,vl) 3X+ [To, T0+T]H

< HUM(t)v(TO) XV, T0+T]H + Hu/ Uni (- — g ()2 dt'; X3V2[Ty, T0+T]H
T

0

/ s,1/2
u 'X_/

u’l' : Xi(s)’lﬂ 1

< Cllv(Tp) : H*|| + CT” inf

Uyp,uy

< C||o(Ty) : BP|| + CT"R,

ur s XV (T, T +T]H.
Let
Ry(To) = 2C{1 + ||u(To) - H*|[ + [[o(To) - H[|}
and let
Ts =Ty A (8CRy)YP NT(s) — Ty,
Then, for 0 < T < T3, ® is a map on

B 9)(Ry, [Ty, Ty + T]) N B*(Ry(Ty), [Ty, Ty + T1).
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In addition,

H(I)l(ul,vl) — (I)l(UQ,UQ) : XS71/2[TQ, TO + T]H

+ HA/ Un(t' — 0l (t) {u’l(t’) —u’z(t’)} dt' ;. XSVPT, T0+T]H
To

u/l/ : X)\(s),l/2

/ /. $,1/2

H(ulﬂh) — (ug, v2) : X3YV2[Ty, Ty + T]H )

< CT? inf

4 i /
U,V =V

+CT? inf

/1! I !
Vg ,Up —Uy

/ /. $,1/2

<

A~ =

Similarly,

H@g(ﬂl,vl) — CI)Q(UQ,’UQ) : Xil/z[T(), T() + T]H
M
1

< 7 s 00) = (g, v0) = 22T, T 471

A(s),1/2

/ /. $,1/2
1 - U2 . X_

< CT?P inf

/ /1 / /"
'lLl ,ul ,'lL2 ,'U,2

" ",
uy 4+ uy 0 X

Therefore ® is a contraction map and the pair of solutions (u, v) is guaranteed in both & As),1/2 [To, To+
T) and X 5Y2[Ty, Ty + T). If T(s) — Ty < Ty A (8C'Ry)~Y*, then Ty = T(s) — Ty and

sup  |(u,v) : XV2(Ty, To+T|| < Ro(To),
TE[0,7(s)—Tp)

which together with Proposition 3.5 implies

sup {lfav: V2T, Ty+ T + u? : V[T, To + T]|| } < CRy(To)?
T€0,T(s)—To)

Then, by lemma 2.3,

sup |[(u,v)(t): H® x H?|| < C’QRQ(TO)Q.
te[To,T'(s))

Thus, we obtain (11.4.2) and T'(s) = T'(A(s)) = T'(0).

5 Proof of the L? conservation and Theorem 2

In this section, we prove the L? conservation for Theorem 2.

Although we can justify a formal proof of the L? conservation by a smooth approximation
argument, we give a different approach here. We derive the conservation laws without approx-
imation of solution in the framework of the Bourgain method as we studied in the previous
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sections. For the Schrodinger equation, there is a proof of the conservation laws in the frame-
work of the Strichartz estimate [22].
Let (ug,v9) € L? x L? and let T' > 0 sufficiently small. Then, we have a pair of extensions

(u,v) € X012 X?r’l/2 of the solutions for the Cauchy problem (NSR1) such that for any
t € 10,7,

u(t) = Uy, (—t)ug — 1A /t Up, (" = t)u(t yo(t")dt’,
v(t) = Up, (t)vg —ic™ X / t Upn, (t — tu(t)?dt’.

Then,
lu(t) - L2* = [|Un(t)u : L|?

o—zA/ Upn, @ a(t)o(t')dt' : L?
— Jlup - £2]| — 21m (uA / 5. [ (ol

2

2

! H/\ /ot 8o (U, (@) )o(t')] dt" : L?

)

where (-, ) is the L?(R) inner product. We have

/0 r)a — / —exp[if:] mLy T

for any f € L*(R) such that f € (r) LL(R). Moreover, the inequalities

I8 (] L] < fus 2222 o s £222] < [fu: X272

o x00

hold by the Holder inequality and

[ 220 = o=t o — - dedodndp € 1

22



by Proposition 3.11. Then,

HA / t Fo [Un () a(t o (t)] dt’ : L?

2

= 2Re / / A [uv](t') A { / (" — ) o(t")dt" | dt'dg

= —2Im// AF 2 [@v] () Fo|Un(—t)]tio — Tz [u] () dt'dE

= 2Im (uo, / T [Unl dt')
+2Tm A / / / / / %u (o — .1 — E)vp,n)lo — 7. €)drdédodndp.

Finally we obtain

lu(t) = L21* = [luo = L*|J*

~ 9lm / / / / / %ﬂ(p o = Oilo = 7. 80 (p, n)drdédodndp.

Similarly, we have

lo(t) : L2|* = [Un(=t)o : L]

t
= |lvo : L?|| — 2Im (@0, A / Fo [Uni(=t)u(t')?] dt/)

2

‘IA/ S [Une(—t')u(t')?dt’] : L*
and
2
A / T [Un(—t)u(t)?] dt' : L?
tl
= —2mm / / ¢ A [u(t')?] Fa [z‘ch / UM(t’—t")u(t"ydt"] d'de
0
_QIm(vo, 1)\/ Sm UM( ) (t )}dt)
Im )\///// explitt] — 1 _ (o — p,& —n)ulp,n)o (0’—7‘ §)drdédodndp.
Then,

lv(®) = L2||* = [lvo = L*|?

= 2¢"'Im X / / / / / %a(a — p. & —n)u(p,n)0(o — 7, €)drdedodndp.
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In addition,

— it [[[[[ 2o — g — o)t — 7. Gardsdodndy

— o [ [[[ [ B e Wit e - dedodndpar
—n [[[[] 22 ”g Tt 7 = p €=l n) e, €)dédadndgldr
—w [[[[] % (7 = o €= nalo’ — 7,17) (), €)dedo dndp'dr’
=

(P o ,n —&ule' — 7.8 0(p,n) d€'do’dn'dp'dr’,

where p) =0 —7,0' =p—7,7 =—7,& =1, and ' = £. Finally we have

lu(t) « L2|* + cllot) « L21* = Jluo « L*||* + cflvo : L*||*
for ¢t € [0, 7.

6 Proof of Local Well-Posedness Independent of Y Norm

In this section, we clarify why the auxiliary space Y is important in our argument. We give
an alternative proof of the existence of solutions for s > 0, without using the auxiliary norm
Y. On the other hand, we shall explain why we need the norm Y at least in our argument
in the case where s = 0. It is important that §(s) in this proof below is strictly positive. We
exchange it into the positive power of T'. Then, the contraction argument is completed when T’
is sufficiently small.

proof. Let s > 0, (ug,vo) € H* x H® and let 0 < T < 1. We take b(s) =3/4A (1+5)/2>1/2
and d(s) = 1/4 A s/2 > 0 for Proposition 3.9.
We define a metric space

B*(R,T)
= {(w,0) e 200, 17 ;

s X200, 7] + || - X5 0,71) < R}
with metric
d'( (ur,v1), (uz,v2) ) = H(ulﬂ)l) — (u2,v2) 3%/S’b(s)[O,T]H :

We see (B"*(R,T),d') is a complete metric space. We prove that & defined as (I[.4.1) is a
contraction map on B"*(R,T') for sufficiently large R and sufficiently small 7.

Let (u,v) € B*(R,T) and let (u/,0') € X*"*) x X" satisfy
u'=u on [0,7] xR, v'=wv on [0,7] xR.
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We have
H@l(u, v) @ X/ [O,T]H

<

Up(—t) ug : X"**O0,T] H

i

A / Un(t' —t) u(t) v(t)dt' : X" [O,T]H .
0
By Lemma 2.1,

|0 (=) o - X500, ]| < (1) o - X2

S o H.

By Propositions 2.2 and 3.9, we obtain

< inf
w

/0 Ut — ) wl@) o(t)) dt’ : X" [O,T]H

wT/ Um<t/ — ) u’(t’) U/<t/) dt' - Xi’b(s)
0

U v Xi,b(s)—l-HS(s)

< inf T°¢

u v’

< inf T ||o . X0

u v’

v X i’b(s)

< ()

‘u : Xi’b(s)[O,T]H

v Xj_,b(s) [OvT]H < Té(S)RZ.
Similarly,
| @a(u,v) : X300, TV|| < llvo = HY|| + T*@R2.

Thus, ¢ is a map from B"*(R,T) to B*(R,T) for some R and T. Moreover, let (u;,v;) €
B"®(R,T) for j = 1,2 and let (u},v}) € X Xfr’b(s) satisfy

ugzuj on [0,7] x R, U}ZUJ‘ on [0,T] xR.

Then, we have

}
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Similarly,

H@Q(Ul, Ul) — (I)Q<U2, ’Ug) . Xﬁ:’b(s)

/ / Xs,b(s)

< 796) inf uy +uy X0 uf —

Uy + g X'_S’b(s)[O,T]H Uy — Us : Xf’b(s)[O,T]H
< TR H(ul, ug) — (vg,v9) : g '5:(s) [0, T]H .

< ()

Thus, ® is a contraction map on B"*(R,T) for sufficiently small T Q.E.D.
The following proposition implies that we can not take 6 > 0 when s = 0 in the above proof.

Proposition 6.1. For any b € [0,1/2) U (1/2,1], there exists a pair (u,v) € X" x X such
that

Also for any § > 0, there exists a pair (u,v) € X2 5 XOV2 such that

w : X9 = 0. (I1.6.1)

Huv ; Xi’fl/%(sH = 00. (I1.6.2)

Remark 6.2. This is the reason why we use not only the norm Xi’b but also the norm Y} and
support restricted functions to obtain solutions of the Cauchy problem (NSR1) .

Proof of Proposition 6.1. Suppose 1/2 < b < 1. Let 0 < 2¢ < b—1/2 and let
~ ~  — —b—1/2—¢
() = 0(r,6) = (O (r— e
IfT>2,T—1<§<T+1,then

(7 + 1€}
S @7 e =l = = = al) ™ dody

> (2r + 1) / ) EE e — ) (e — ) — )2
I3
> (2r 4 1) / (14 €4 (e —n) >y

3
> (9 1 b—1 71725d
2 1) [T
> (r+ 1)1,

~Y

This implies u;v, & X?r’b_l. Moreover, suppose 0 < b < 1/2. Let b and 0 satisfy 0 < 2 < 1/2—b
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and let

,_.

“(r— ey
= e+ |51>*““.
< (a) (b), for £ > 0,

e e e G

(r—o— =) (1 —o+ e =) dody

e e G U

(r—o+|g—nl)""* dodn

uz(7, ) = (§)
va(7,8) = (&)

Since for any real number a and b, (a + b)

mH

> <7_+€>b—1 /0 < —%—a . —b—%—e —2b—2¢
e ) e m) (T +¢) dn

> r+E) I TP g L2 (L),

Therefore, usvy & X?r’b_l. We complete the proof of (I1.6.1).
Suppose 6 > 0 and b= 1/2. Let ¢ satisfy 0 < 2¢ < § and let

T(r,€) = Ta(r,6) = (&) 7F (r — ¢y 71~
Ifr>2 71—1<&<7+41, then

(o Ieh ™ [ [ e = o = ) (= o e -l dody

> (27 4 1)V / e — T = e — | — ) dy

3
> (27 4 1)V / (L4 €+ (e — )~ >~<dy

0

€
2, <27__|_1>1/2+5/ <€>7172€ dn

0
> (r+ 1)

~J

This yields usvs € X2"™" and we obtain (IL.6.2). Q.E.D.

Corollary 6.3. For any b € R and s < 0, there exists a pair u,v € X" such that
Huv : Xi’b_lu = 0. (I1.6.3)

Remark 6.4. Proposition 6.1 and Corollary 6.3 show that Proposition 3.5 is almost optimal.
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Proof of Corollary 6.3. Suppose 1/2 <b < 1. Let 0 < ¢ < —s and let
~ ~ -1 ¢ —b—1/2—¢
(7, 8) = Bi(r,€) = ()77 (r— ey
IfT>2,T—1<§<T—I—1,then
(T + |€|>
/ [ g ) (o e~y dody
& 1

2 (6)° 27 + 1 / 7 = e —al = b an

0

£
> (6)° (2r + 1) / (14 €+ (e — )=y

3
21t [
0
> T+ 1>_1/2 )

~J

This implies ujv; & X_‘T’L’bfl. Moreover, suppose 0 < b < 1/2. Let b and 0 satisfy 0 < 2¢ < 1/2—b
and let

uy(7, &) = (§) 5( e b—1/2—¢
Ga(r,€) = ()T (r — eV + |£|>—1/2—s_
Since for any real number a and b, (a + b) < (a) (b), for £ > 0,

O e e e
(=0 —[&=n) " (T — o+ & —n)* " dody

2 el [[ g m s oy

(T—o+ =)~ —b-1/2- “dodn

0 1 1
2 [ e ™
AT+ TR Lo (L2).

Therefore, usvy & X?r’b_l. We complete the proof of (I1.6.3). Q.E.D.
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Part II1
Study of (NSR2)

1 Introduction

In this part, we show Theorem 3. As wee see Remark 3.7, the Bourgain method is not applicable
to (NSR2) . We prove Theorem 3 by a compactness argument based on the energy and charge
conservation of the solutions for (NSR2) . By these conservation laws, the uniformly bound-
edness in HY/? and equicontinuous in L? of a sequence of H' approximations for H'/? solution
are given. We also use two convergence propositions. The first proposition is a kind of the
Arzela Ascoli theorem for Banach valued functions on R. This proposition ensures a sequence
of Banach valued functions converge weakly and the weak limits have the same continuity with
the sequences. By the second proposition, the H'/? convergence of a H'/? sequence follows form
the L? convergence and the convergence of their Energies. The existence of solutions follows
from the first convergence proposition, where the weak limit of an approximation sequence is
commutative with time differentials and the nonlinearities. The time continuity of solutions
follows form both of the propositions. The continuity with respect to initial data follows from
the second proposition and a Vladimirov argument. By the Vladimirov argument, we show the
L? continuity with respect to initial data.

We define ((+,-), (-, ))ye : (H'V2x HY?)x (HY?2x H'?) — Cand ||(-,-) : #6|| : H'?xHY? - R
as

(ur,01), (ug,02)) = (mi = &)y, (mf — A) P, )
( ), = .

¢ 2 ANl/4 2 ANl/4
o (m2 =)o, (m2 - a))

w0 90 = ((00), ()
We also define the energy E of (NSR2) and M as follows:

E(u,v) = ||(u,v) : #||* — Re(\v, u?) 2,
M(u,v) = ||(u,v) : || + Q(u,v) + [|(u,v) : L* x L?||.

We give a brief outline of the remainder of this part. In Section2, some basic calculations are
summarized and we prove Theorem 3 in Section 3.
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2 Preliminary

Here, we collect some basic propositions. The Cauchy problem (NSR2) with initial data
(u(0),v(0)) = (ug, vo) is rewritten as the following system of the integral equations;

w(t) = Uy, (—t)ug — i\ / t U, (t — t)a(t') v(t)dt,
0 (I11.2.1)
v(t) = Up, (—t)vg — z‘c—lX/ Up, (t — tu(t')?dt’.

For s > 0, H® solutions to (II1.2.1) satisfy (NSR2) in H*!.

Proposition 2.1. Let (ug,vo) € HY2 x H'Y2. If there is a pair of solutions (u,v) € C(R, H/?x
H'/?) to the integral equations (111.2.1) for the initial data (ug,vy), then Q(u(t ) v(t)) = Q(ug, vo)
for any t.

proof.

%H . L?|]* = 2Re(Oyu, u) = 2Im(idu, u)

(
(—v/m2 — A u+ Auv, u)
Im()\v, )
(
(=

2Im

Hv L?||* = 2Re (0, v) = 2Im(idv, v)

Vm2 — A v+t a?, )
= —2c" 1Im()\v,u ).
Q.E.D.

Proposition 2.2. Let (ug,vy) € HY? x H'?. If there is a pair of solutions (u,v) € C(R, H/? x
HY2)NCYR, HY/2 x H='/?) to the integral equations (111.2.1) for the initial data (ug,vo), then
E(u(t), v(t)) = E(uo,vo) for anyt.

proof. We assume (u,v) € C(R, H' x H'). Then, ||(m? — A)Y4u : L?|| and ||(m? — A)Y4 : L2

are differentiable and

dtH(m — A)%u(t) : L?||* = 2Re(—i0yu(t) + Auw(t), Ou(t)) = Re(Av(t), 0, (u?)(t)),

ZH(m — A)iv(t) . L?[]? = 2Re(—i0ww + ¢ "M (1), O,v(t)) = 2¢ ' Re (0, (M) (t), u?(t)).

This shows the energy conservation for H' solution. We obtain the proposition by the smooth
approximation. Q.E.D.

Corollary 2.3. Let (ug,vo) € H* x H*. For any T > 0, if there is a pair of solutions
(u,v) € C([0,T], H' x H') to the integral equations (I11.2.1) for the initial data (ug,vo), then
1u(e), o(0)) - HY2 x HV2]| < Mo, o) for any t € [0,T).
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proof. H'/? x H'/? = [? x [?> N #€ and the L? x L? norm of solutions is bounded by @ (uq, vo).
By Holder and Minkowski inequalities,

|(Ow(t), w?(t)) 2| < o) = L2 |Ju(t) - LY
S o) = 22 [futt) - 2] [t - 7772
< Q(uo, vo) ||(u, v)(t) : ]|

Then,
1, 0)(2) = 7€
< |[(uo, o) = HI* + | (Awo, ug) 2| + | (M (B), w?(1)) 2]
< Nl (uo, vo) = HE||* + Q(uo, o)l (uo, o) = HE|| + Q(uo, vo) || (u, v)(t) : #]|.
This shows ||(u,v)(t) : || < M (ug, vo). Q.E.D.

Lemma 2.4. Let (ug,v9) € H' x H'. Then, the integral equations (I11.2.1) has a unique pair
of global solutions (u,v) € C(R, H' x H').

proof. By Sobolev embedding theorem, we have a unique pair of solutions (u,v) in C([0,7T] :
H' x H') for sufficiently small T > 0. By Brezis-Galouet inequality, for any f € H!,

[ 2l DY IV H”QII\/log @A+ Nf = HY /IS HYZ]D.

Moreover, for a > 0, z%log(2 + a/z) is increasing for  on R+q. Indeed,

3

d , a a x> a
R (2 —>:2 1 (2 —>— @
dxx og +a: x log +:r; 9%+ az?

> x(2log2 —1) > 0.

Then,
| (w, v)(t) : H' x H||
< H (ug,v) : H' x H1||

1/2 Hu ') HY| w,o)(t) : H 1| g4
/H o (24 LY ot

1/2 HU ') H| ' 1 1 '
/ o) - H'| \/log ” HWH) | (u,v)(#) - H x H'| dt

< H (ug,vo) : H' x H1||

+ M(uo,vo)/o \/log (2 + H(u’v)]g()zzof;; Hl”) | (w, v)(t) : H" x H'|| dt'.
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Suppose a,b > 0 and f and F' be positive functions satisfy f < F and

Ft)=a+ b/o F)/log(f(t))dt'.

Then,

%\/log F(t) = F)

F(t)\/log F(t) —

This shows ||(u,v)(t) : H' x H'|| < co. By the blow-up alternative argument, the solutions can
be extended globally. Q.E.D.

The next lemma plays an important role to construct solutions.

Lemma 2.5. Suppose that X and Y are reflexive Banach spaces such that Y — X and Y is
dense in X. Let K be a bounded closed ball of Y. Let f be a non-negative valued function satisfy
f(0) =0 and f is continuous at the origin. Let (up)nez., be a sequence of K-valued function
on R satisfy

sup ||un(t1) — un(to) : X|| < f(t1 — to). (I11.2.2)

Then, we have a function u: R — K and a subsequence of (Un)nez., such that the subsequence
converges to u pointwisely in weak Y topology. In addition, the weak limit u satisfies that

[u(tr) —ulto) : XI[| < f(t1 — to)
and for any 1 € X*, (I, un) x+ x)n converges uniformly on any bounded closed interval I C R.

proof. Put ¢ be a bijective map from Z-o to Q. Since (u,(0(1)))nez., C K, we can take
p(1,+) : Zsg — Zso such that (upn)(0(1)))nez., converges weakly in Y. Let u(oy) € Y be
the weak limit of (uy(1,n)(0(1)))nez.,- Similarly, for any k € Zo, we can take p(k,-) : Zso —
p(k —1,Zq) such that (un)(0(k)))nez., converges weakly, and let u(c(k)) be the weak limit
Of (g (7))o

Put v,, = upnn). We show (v5,(t))nez., converges weakly for any ¢t. For the reflexivity of Y,
it is enough to show ((I,v.(t))y+ y )nez., be a Cauchy sequence for any [ € Y*. Let € > 0 and
let I' € X* and 0 € Q satisfy ||| =" : Y*|| < e and

flt =

o) S—g :
117 X*|| +1
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Then,
‘(l, v (t) — Um(t»Y*,Y‘

< {0 vn®) = 00| + | Vs oml®) = 0@ x|

(U vn(0) = (@) x| + 1= 1 Y| diam(K)

+

<2 X f(t — o) +

(' v,(0) — Um(0)>x*,x‘ + diam(K)e

< (2 + diam(K))e +

(I, 00(0) = vm(0)) x- x

This means (v, (t))nez., converges weakly in Y for any t € R. Let u(t) € K be the weak limit
of (v,(t))nez,- The continuity in X of u is obtained by

(1 u(ty) = ulto)) - x|

< | u(t) = valt)) e x| + | (G lte) = valt) - x|
] vnlt) = valto)) -]

<N X7l = to) + [ ults) = onlt)) e x|

|t ulto) = vn(t) x|
= [ X f(ti —to)  as n — o0,

Moreover, let € > 0 and (¢,,,)M_, be an increasing sequence such that ¢, = min I and ¢;; = max [
and sup,, f(tms+1 — tm) < €. Let N be sufficient large such that

]<z, Vn () — u(tm)>X*7X‘ <e
for any 0 <m < M and n > N. Then, for n > N,
[ valt) = u() - x|
<4t o) = b)) e x| + [ 00 (8) = vt - x

{1 ultn) = u(®) - x
et 2)0: X7 fltm — 1)
< (1420 X*|)e.

Q.E.D.
The next lemma is important for our proof of continuity.

Lemma 2.6. Let (U, Vn)nez., be a bounded HY? x HY? sequence which converges (u,v) €
HY? x HY? in L? x L? topology. If E(uy,,v,) converges to E(u,v), then ||(u,v) — (tn,v,) :
F|| — 0.
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proof.
(s v0) = (u, 0) = HE|J*

_ 2Re<(u,v), (u,v) — (un,vn))% () = FEY - || (i, 0) :

= 2R — \Un, Un
e (uv), (u,0) = (uavn))
+ B(u,v) — E(upn, v,) — Re(Av, u?) + Re(Av,, u?). (I11.2.3)
The first coordinate of the first term on the right hand side is estimated as follows:

|(V/m2 = Au,u—u,,)|
< ‘(p(p_ A)_l Vv m% _Auvu_un)l + ‘(A(p—A)_l V m'[% - AU,U—U,n)‘
< ol = A /m2 = Au: L|||ju — u, : L2

+[(A(p — A /m2 — Au H Y2 ||u — u, - HY?|

Then, the left hand side is arbitrarily small for sufficiently large p and n. By Holder and
Gagliardo-Nirenberg inequalities,

(v, u?) = (vn, )]

< ‘v — Uy L2H Hu : L4H2 + an : L2H Hu—l—un : L4H Hu—un : L4H
<l HY2|2 o — v, 22| +

o s L2\ (s HY2)) A+ g = HY?))?2 (w22

Then, the remain terms of (II1.2.3) go to 0 as n increases. Q.E.D.

3 Proof of Theorem 3

In this section, we separate the proof into two parts, the proof for the construction of solutions,
and the proof for the continuous dependence on initial values.
3.1 Construction of Solutions

Here, we construct solutions for H'/? x H'/? initial data. The finiteness of charge and energy
plays an important role for our construction. Let (ug,vo) € H'Y? x H'/? and (Uon, Vo0 )nez, C

H' x H' satisfy (upn,v,) — (u,v) in H/? x H'/? and

H(UO»MUOW) D HY? % Hl/QH S H(Uo,vo) CHY? x H1/2H :
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Let (u,,v,) € C(R, H' x H') be the solutions of (II1.2.1) for the initial data (ug,vo,). For
ty < tq,

Hun(tl) — up(to) : L2H
< |HUnm. (t1 = to) — 1}un(to) : L7 +/t |Tnvn (') « L?|| dt’

< H(Q A (t — to)v/m2 — A)u,(ty) : L?

S HUD . H1/2H ‘tl - t0’1/2 + M(Uo,vo)z‘tl — to’.

t1
[ ) 2 ot < 12
to

Similarly,
||vn(t1) — vp(to) : L2H
t1
< |{Unm, (t1 = to) = 1}va(to) : L?|| +/ |wn (t)? : L?|| dt’
to

t1
< |@ntt — t)/mT=B)u(te) : 17 +/ luatey - 52" d
to

S ||’UO : Hl/zH ’tl — t0|1/2 + M(UQ,U0)2’t1 — t0|

Then, by Lemma 2.5, we have (u,v) € C(R, L? x L?) N L>(R, H/? x H'?) such that a subse-
quence (@i, On)nez-o Of (Un, Un)nez., converges pointwisely weakly in H'/2 x HY/? and

H(u,v)(tl) — (u,v)(t) : L* x L2||
5 H(U(),U()) . L2H |t1 - t0|1/2 + M(UQ,U0)2|t1 - t0|

In addition, by (NSR2) ,
|| (O, Oy )(t) - H Y% x H_1/2|| < M (ug, vo) + M(uo,vg)Q,
and

Hﬁtun(tl) — 3tun(to) : Hilu

— H\/mu2 — Aup(t) — vVmy? — Auy(to) : HF
- ||u_nvn(t1) — Upvp(to) H_lH

< (L4 M(uo, v0))) | (wns va) (t1) = (tns va) (o) = L7

< (14 M(ug, vo)) (|| (w0, vo) : L* x L?|| Jt1 — to? + M (ug, vo)|t, — tol) -

Then, by Lemma 2.5, we have a subsequence of (i, O )nez-,, still denoted by (@, U )nez.,, and
(u',v') € CR,H™Y x H™Y) N L=(R, H~Y/2 x H~'/2) such that (9T, T )nez., converges to
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(u',v") pointwisely weakly in H~/2 x H~'/2. In addition, let [ € H'/? and let p > 0. Then,

t
<l,€tn(t) —ug — / u’(t')dt’>
0 2,12

t
(1, Optin (') — /() iy gr-1/2

dt’

< |i: L2||||u0,n — g L2 +

Ot
< L2l —wo: 22 + [ )L Bl () oy
0

+t ||yt — u’ : L([0,4], H72)| HA(p A HY,

dt’

Since (04l )nez., converges weakly uniformly on [0,¢], the right hand side goes to 0 as A and n
increase. This shows

t
u(t) :uo—l—/ W' (t)dt', dwu =1/, in H Y2
0

We also have dv = v'. Then, by (NSR2) , we have (F,G) € C(R,H ' x H )N L®(R, H /% x
H~=Y2) to which (T8, (t), @2 (t))nez., converges weakly in H—1/2 x H=Y/2. What is left is to
show (uv,u?) = (F,G). Let ¢ € C®(R, [0,1]) with x{_1,1] <9 < x[_29 and t € R, where x is a
characteristic function. By a bilinear estimate for Sobolev norms,
| (un (), pva) () - HY* 5 HYA|| < [« HY?|] || (s va)(£) « HY? x H'Y2||
< [ HY2{| M (o, vo).
Then, by the Rellich’s theorem, there is a subsequence of (@, (t), 75 (t))nez-,, still denoted by

(tn(t), 0n(t))nez-o, such that ((Viy,, ¥0,)(t))nez., converges in L? x L?. Let ((uy(t), vy(t))nez-q
be the limit of (¢, (t), Y0, (t))nez-,- Then, for any [ € L?

‘(l, Uy (t) — pult)) s 1o
< ’(l,uw(t) — w&n(t>>L2,L2

—0 as n — oo.

+ | W= ul) = (1)) 2 1o

This means (uy, vy) () = (Yu, o) (t) and (@, (1), 0,(t)) = (u(t), v(t)) a.e. on [—1,1]. In addition,
| (Vv (t), Yl (t)) - HY* x H1/4H K H1/2H M (ug, o).
Then, we have a subsequence of (@, (t), U, (t))nez-,, still denoted by the same symbol, such that

(Y0 (t), VU2 (t) nezo, converges in L2x L2, Let (Fy(t), Gy(t)) is the limit of (4,0, (t), V2 (t))nez-, -
For any | € H'/?,

[ Fot) = 0P () oo g
‘<w l F ) - unvn<t)>H1/2 JH-1/2

—0 as n— oo.

(1 Fult) = 6T (®) 2,2
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This means (7,9, (t))nez., converges to F a.e. on [—1,1]. Then, we have F(t) = wuv(t) on
[—1,1]. By translation ¢, F(t) = u(t)v(t) and G(t) = u(t)* on R are shown.
3.2 Proof of the Continuous Dependence on Time Variable and Initial Values

Here, we show the continuous dependence of solutions in H'/? x H'/2? on time and initial va