
Mathematical foundations
of semirelativistic nonlinear fields

半相対論的非線形場の数学的基礎

October 2016

Research on Mathematical Physics

Department of Pure and Applied Physics

Graduate School of Advanced Science and Engineering

Waseda University

Kazumasa FUJIWARA

藤原 和将



2



Contents

1 Introduction 5

1.1 Introduction 5

1.2 Physical Background 6

1.3 Preliminaries 7

1.3.1 Banach Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 Lebesgue Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.3 Sobolev Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

1.3.4 Besov Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Earlier Works 11

1.5 Main Statement 12

1.6 Outline 15

2 (SR) with Quadratic Nonlinearity 17

2.1 Introduction 17

2.2 Preliminary 19

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Basic Characteristics of Fourier Restriction Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Linear Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.4 Bilinear and Trilinear Estimates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

2.3 Proof of Theorem 2.1.1 28

2.3.1 Proof of Existence of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Proof of Persistence Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3 Proof of Local Well-Posedness without Y Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Proof of Theorem 2.1.2 36

2.5 Proof of Theorem 2.1.3 38

2.6 Proof of Theorem 2.1.4 39

3



4 Contents

2.6.1 (2.1.2) with −1/2 < s < 1/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

2.6.2 (2.1.3) with −1/2 < s < 1/2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

3 (SR) with a Priori Estimate 43

3.1 Introduction 43

3.2 Preliminary for the Proof of Theorem 3.1.1 43

3.3 Proof of Theorem 3.1.1 47

3.3.1 Proof of Existence of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Proof of the Continuity of Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 (SR) without Gauge Invariance 51

4.1 Introduction 51

4.2 Preliminary 53

4.3 Proof of Theorem 4.1.1 54

A.1 Study of Semirelativistic System 57

A.1.1 Introduction 57

A.1.2 Sketch of Proof of Theorem A.1.1.1 59

A.1.3 Proof of Theorem A.1.1.2 62

A.2 Study of Weighted Integral 65

A.2.1 Introduction 65

A.2.2 A Basic Property of F 71

A.2.3 Infinitely Iterated Logarithm 74

A.2.4 Optimality of Theorems A.2.1.2 and A.2.1.3. 78

A.3 Study of Fractional Leibniz Rule 85

A.3.1 Introduction 85

A.3.2 Preliminaries 89

A.3.3 Proofs of Main Estimates 92

A.3.3.1 Proof of Lemma A.3.1.2 and Theorem A.3.1.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

A.3.3.2 Proof of Corollary A.3.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.3.3.3 Proof of Corollary A.3.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 95

Acknowledgments 102

List of Papers 105



Chapter 1

Introduction

1.1 Introduction

In this thesis, we study the Cauchy problem of the semirelativistic equation{
i∂tu± (m2 −∆)1/2 u = F (u), t ∈ [0, T ), x ∈ R,
u(0) = u0, x ∈ R,

(SR)

where u is a complex valued function of (t, x) ∈ R × R, F : C → C denotes nonlinearity, ∂t = ∂/∂t,
m ∈ R, ∆ = ∂2x = (∂/∂x)2 is the Laplacian in R. Moreover, the operator (m2 −∆)1/2 is defined as a
Fourier multiplier with symbol (m2 + ξ2)1/2. Namely, we define (m2 −∆)1/2u = F−1(m2 + ξ2)1/2Fu(ξ),
where ξ is a real variable, F is the Fourier transform defined by

Fu(ξ) =
1√
2π

∫
R
u(x) exp(−ixξ)dx,

and F−1 is the inverse Fourier transform defined by

F−1u(x) =
1√
2π

∫
R
u(ξ) exp(ixξ)dx.

For simplicity, we describe Fu as û.
The aim of this thesis is to study the solvability and well-posedness of the Cauchy problem (SR)

with power type nonlinearity. Specifically, we study the relationship between the smoothness of initial
data u0 and the solvability and well-posedness of (SR) with some power type nonlinearities. Here, we
say u : [0, T ) → S∗(R) is a time-local solution to the Cauchy problem (SR) for the initial data u0 if u
satisfies the following weak equation corresponding to (SR):∫ T

0

⟨u(t) | i∂tϕ+ (m2 −∆)1/2ϕ(t)⟩S(R)dt = ⟨u0 | ϕ(0)⟩S(R) +

∫ T

0

⟨F (u(t)) | ϕ(t)⟩S(R)dt

for any ϕ ∈ S(R2), where S(Rn) is the set of all smooth rapidly decreasing functions, S∗(Rn) is the
dual of S(Rn), and ⟨· | ·⟩S(R) is the dual product of S(R). We also say u : R → S′(R) is a time-global
solution to the Cauchy problem (SR) for the initial data u0 if u is a time-local solution for any T ∈ R.
Let X ⊂ S∗(R) be a Banach space. We say the Cauchy problem (SR) is time-locally well-posed with
respect to X, if any initial data u0 ∈ X, we have some T ∈ R which depend only on ∥u0∥X such that
we have a unique solution u ∈ C([0, T );X) to (SR) and the solution map from X to C([0, T );X) is

5



6 Chapter 1. Introduction

continuous. We also say (SR) is ill-posed if (SR) is not time-locally well-posed and (SR) is time-globally
well-posed if (SR) is time-locally well-posed for any T ∈ R. In this thesis, we consider nonlinearity of
the following forms:

F (z) = λ|z|p, λ|z|p−1z, λzp, λzp,

where p ≥ 1, λ is a non-zero complex number and z is a complex conjugate of z. It is widely known
that for general differential equations, the condition of initial data for the solvability and well-posedness
depends on form of nonlinearity, λ, and p. So the aim of this thesis is to study the sharp condition of
initial data for the solvability and well-posedness of (SR) for each form, λ and p.

1.2 Physical Background

To motivate our problem, we revisit four fundamental equations with regard to quantum and relativis-
tic quantum mechanics: the Schrödinger, Klein-Gordon, Dirac, and semirelativistic equations. The
Schrödinger equation is the first model to describe quantum particles. The origin of the Schrödinger
equation is the following non-relativistic energy equation of a free particle,

E =
p2

2m
, (1.2.1)

where E is energy, p is momentum, and m is mass of free particle. The free Schrödinger equation is
derived by quantizing (1.2.1) as follows:

E = iℏ
∂

∂t
, p = −iℏ∇,

On the other hand, in special relativity, the relativistic energy equation of a free particle is described by

E =
√
m2c4 + |p|2c2, (1.2.2)

where c is the speed of light. By quantizing (1.2.2), the following free semirelativistic equation is
obtained:

iℏ
∂

∂t
ψ = (m2c4 − c2ℏ2∆)1/2ψ.

Although, the semirelativistic equation is naturally derived by simple quantizing of the relativistic energy
of a free particle, the semirelativistic equation had not been considered as a fundamental equation of
a free relativistic particle, since the operator (1 −∆)1/2 is non-local. To avoid the non-local operator,
free Klein-Gordon equation is introduced by quantizing the squared energy:

E2 = m2c4 + |p|2c2.

However, since the Klein-Gordon equation is second order in time, the free Klein-Gordon equation
does not admit a positive definite energy. To obtain the definite relativistic density and energy, the
free Dirac equation has been considered as a modification of the free Klein-Gordon equation. By this
modification, the energy of the free Dirac equation is definite but negative definite for some initial
data. To justify this non-positive definiteness, many physical ideas have been considered. However, we
may now have enough mathematical knowledge to consider semirelativistic equations directly without
any modification of non-local operator. So in this thesis, we consider some fundamental properties of
semirelativistic equation.

The semirelativistic equations have been used also in other physical model. For example, with
Hartree type nonlinearity, the semirelativistic equation is used to describe boson stars. For the details
of the model boson stars, we refer the reader to [22, 29, 66, 67]. Moreover, the mass-less semirelativistic
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equation is obtained by Laskin by the generalized Feynman path integral. In this case, the mass-less
semirelativistic equation is called as fractional Schrödinger equation. For the details of the relationship
between fractional Schrödinger equation and generalized path integral, we refer the reader to [46, 63,
64, 65]. Even in non-quantum physics, semirelativistic equation has been used to describe physical
phenomenon. For instance, the mass-less semirelativistic equation with power type nonlinearity is used
as a model of wave turbulence. In this case, semirelativistic equation is called as half wave equation.
For the details of the model of wave turbulence, we refer the reader to [18, 62, 74].

In this thesis, we consider the semirelativistic equation with power type nonlinearity, since power
type nonlinearity may be considered as one of the most fundamental nonlinearity and used as an ap-
proximation of general nonlinearity. So, this thesis is devoted to understand foundation of the nonlinear
semirelativistic equation.

1.3 Preliminaries

In this section, we prepare some basic knowledge to state our main results and discuss further.

1.3.1 Banach Space

Let X and Y be Banach spaces over C. We define the norm of X ∩ Y as

∥u∥X∩Y = ∥u∥X + ∥u∥Y .

We denote the dual of X as X∗. We call X as a reflexive Banach space, if X is identified with X∗∗.
The following lemmas are essential statements. For the details, for instance, we refer the reader to

[16].

Lemma 1.3.1. Moreover, Let k ∈ N and (Xj)
k
j=1 is a sequence of Banach spaces. Let T is a k-linear

operator from
∏k

j=1Xj into Y . Then there exists C > 0 such that for any x ∈
∏k

j=1Xj,

∥T (x)∥Y ≤ C

k∏
j=1

∥xj∥Xj .

Lemma 1.3.2. Let X be a reflexive Banach space and (xn)n∈N be a bounded sequence of X. Then there
exists a weakly convergent subsequence of (xn)n∈N. Moreover, let x is a weak limit of (xn)n∈N, then
∥x∥X ≤ lim infn ∥xn∥X .

Here, we also prepare fundamental argument of quotient spaces. Let X be a Banach space and
M ⊂ X be a subspace. Then for any x ∈ X, we denote an equivalent class of x as [x] and define [x] as

[x] = {y ∈ X | x− y ∈M}.

We also denote the set of all equivalent classes in X with regard to M as X/M and define the norm of
X/M as

∥[x]∥X/M = inf
y∈[x]

∥y∥X = inf
z∈M

∥x+ z∥X .

The following lemma is also basic and we use it in Chapter 2.

Lemma 1.3.3. Let X be a Banach space and M be a closed subspace. Then X/M is also a Banach
space.
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We say a normed space X is embedded into another normed space Y , if X ⊂ Y and there exists
C > 0 such that

∥x∥Y ≤ C∥x∥X
for any x ∈ X and denote X ↪→ Y .

Next, we consider the following X-valued equation

x = L(x0) +Nk(x, · · · , x) (1.3.1)

with x0 ∈ X0, where X0 is a Banach space, L : X0 → X is a linear map and N : Xk → X is a k-linear
map. We say (1.3.1) is quantitatively well-posed in X0 and X if L and N satisfy

∥L(x0)∥X ≤ C∥x0∥X0
, ∥N((xj)

k
j=1)∥X ≤ C

k∏
j=1

∥xj∥X .

The following contraction argument is basic to construct solutions for (1.3.1).

Lemma 1.3.4 ([3]). Let (1.3.1) be quantitatively well-posed in X0 and X. Then there exists C0 and
ε > 0 such that for any x with ∥x∥X < ε, we have a unique solution x satisfying ∥x∥X < C0ε and

x =

∞∑
j=1

Aj(x0), (1.3.2)

where

A1(x0) = L(x0),

Aj(x0) =
∑

j1···jk≥1,
∑k

l=1 jl=j

Nk((Ajl(x0))
k
l=1).

If Aj(x0) ̸∈ X for some j, it doesn’t imply that there exists no solutions for (1.3.1) but it is impossible
to construct a solution by (1.3.2) successively. If Aj is not continuous map form X0 to X for some j,
the solution map for (1.3.1) is called not Cj , since

dj

dρj

∞∑
j′=1

Aj′(ρx0)

⏐⏐⏐⏐
ρ=0

=
dj

dρj

∞∑
j′=1

ρj
′
Aj′(x0)

⏐⏐⏐⏐
ρ=0

= j!Aj(x0).

Although the discontinuity of some Aj seems not sufficient to show the discontinuity of the solution
map, under an appropriate condition, we can show the discontinuity of the solution map from the
discontinuity of some Aj .

Lemma 1.3.5 ([3]). Let (1.3.1) be quantitatively well-posed in X0 and X. Let X0 ↪→ Y0 and X ↪→ Y .
Let the solution map of (1.3.1) u0 → u be continuous from BX0(r) = {u0 ∈ X0 | ∥u0∥X0 < r0} with
∥ · ∥Y0

into {u ∈ X | ∥u∥X < r} with ∥ · ∥Y for some r0, r > 0. Then each Aj is a continuous map form
BX0

(r) = {u0 ∈ X0 | ∥u0∥X0
< r0} with ∥ · ∥Y0

into X with ∥ · ∥Y .

1.3.2 Lebesgue Space

Here, we collect some basic statements of the Lebesgue space. Let n ∈ N and let X be a Banach space.
Let 1 ≤ p ≤ ∞. For a measurable X valued function f on D ⊂ Rn, we denote the Lp norm of f as
∥f∥Lp(D;X) and define ∥f∥Lp(D;X) as

∥f∥Lp(D;X) =

⎧⎪⎨⎪⎩
(∫

D
∥f(x)∥pXdx

)1/p

, if 0 < p <∞,

inf{C ∈ R | ∥f∥X ≤ C, a.e. on D}, if p = ∞
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and we denote Lp(D;X) is all X valued measurable functions whose Lp norm is finite. We also define
L1
loc(Rn;X) as a set of all measurable functions f : Rn → X such that f ∈ L1(D;X) for any compact set

D. It is widely known that if X is a Banach space, then Lp(D;X) is a Banach space for any 1 ≤ p ≤ ∞.
It is also basic fact that if X is a reflexive Banach space, then Lp(D;X) is a reflexive Banach space for
any 1 < p <∞ and the dual space of Lp(D;X) is identified with Lp′

(D;X∗), where

p′ =

⎧⎪⎨⎪⎩
∞ if p = 1,
p

p−1 if 1 < p <∞,

1 if p = ∞.

For simplicity, we abbreviate Lp(D;C) as Lp(D). Moreover, for complex valued functions f and g on
Rn, we denote the convolution of f and g as f ∗ g and define f ∗ g as

f ∗ g(x) =
∫
Rn

f(x− y)g(y) dy.

Here, we collect 4 more basic facts. For the details of them, for instance, we refer the reader to
[16, 33].

Lemma 1.3.6. Let f ∈ L1
loc(Rn). If for any ϕ ∈ C∞

c (Rn),∫
Rn

f(x)ϕ(x)dx = 0,

then f = 0 a.e., where C∞
c (Rn) is the set of all compact supported smooth functions on Rn.

Lemma 1.3.7 (the Hölder inequailty). Let D ⊂ Rn. Let p, q, r ∈ [1,∞] satisfy
1

p
=

1

q
+

1

r
. Then, for

measurable functions f, g on D,

∥fg∥Lp(D) ≤ ∥f∥Lq(D)∥g∥Lr(D),

where the equality holds if f = g.

Lemma 1.3.8 (the Young inequality). Let p, q, r ∈ [1,∞] satisfy 1+
1

p
=

1

q
+

1

r
. Then , for measurable

functions f, g on Rn, the following estimate holds:

∥f ∗ g∥Lp(Rn) ≤ ∥f∥Lq(Rn)∥g∥Lr(Rn).

Lemma 1.3.9 (the Hausdorf-Young ineqality). Let p ∈ [2,∞]. Then, for measurable functions f, g on
Rn, the following estimate holds:

∥Ff∥Lp(Rn) ≤ ∥f∥Lp′ (Rn).

Moreover, the Fourier transform is a unitary operator on L2(Rn).

1.3.3 Sobolev Space

Here, we collect some basic statements of the Sobolev space. For s ∈ R and 1 ≤ p ≤ ∞, we define the
inhomogeneous Sobolev space of order s based on Lp(Rn) as

{f ∈ S∗(Rn) | (1−∆)s/2f ∈ Lp(Rn)},

and denote it as Hs
p(Rn), where (1−∆)s/2 is a Fourier multiplier with symbol (1 + |ξ|2)s/2, namely,

(1−∆)s/2f = F−1(1 + |ξ|2)s/2Ff.
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For simplicity, we denote (1 + |ξ|2)1/2 as ⟨ξ⟩. We also define the norm of Hs
p(Rn) as

∥f∥Hs
p(Rn) = ∥(1−∆)s/2f∥Lp(Rn).

Similarly, we also define the homogeneous Sobolev space of order s based on Lp(Rn) as

{f ∈ S∗(Rn)/P(Rn) | (−∆)s/2f ∈ L2(Rn)}

and denote it as Ḣs
p(Rn), where P(Rn) is the set of all polynomials on Rn and (−∆)s/2 is a Fourier

multiplier with symbol |ξ|s. We define the norm of Ḣs
p(Rn) as

∥f∥Ḣs
p(Rn) = ∥(−∆)s/2f∥Lp(Rn).

For simplicity, we denote Hs
2(Rn) as Hs(Rn) and Ḣs

2(Rn) as Ḣs(Rn).
The following estimates are basic in this thesis:

Lemma 1.3.10 ([6, 88] the Sobolev embedding). If s1 − n/p1 = s2 − n/p2, 1 < p1 < p2 < ∞, and
s1 > s2, Ḣ

s1
p1
(Rn) ↪→ Ḣs2

p2
(Rn) and Hs1

p1
(Rn) ↪→ Hs2

p2
(Rn). Moreover, if s−n/p > 0, Ḣs

p(Rn) ↪→ L∞(Rn)
and Hs

p(Rn) ↪→ L∞(Rn)

Lemma 1.3.11. For f, g ∈ S(Rn) and a, b, c ∈ R, the estimates

∥fg∥H−a(Rn) ≤ C∥f∥Hb(Rn)∥g∥Hc(Rn) (1.3.3)

holds if and only if

a+ b+ c >
n

2
, a+ b ≥ 0, b+ c ≥ 0, and c+ a ≥ 0,

or
a+ b+ c ≥ n

2
, a+ b > 0, b+ c > 0, and c+ a > 0.

Especially, when −a = b = c = s, (1.3.3) holds with s > n/2. A simple proof for the sharp sufficient
condition (1.3.3) is shown in chapter A.2 and an improved estimate with −a = b = c is argued in
Appendix A.3.

The following lemma is also useful to extend the time-local solution.

Lemma 1.3.12 ([15, 17, 81]). Let s > n/2. There exists C = C(n, s) such that for f ∈ Hs(Rn),

∥f∥L∞(Rn) ≤ C∥f∥Hn/2(Rn)

√
log(1 + ∥f∥Hs(Rn)) + 1.

1.3.4 Besov Space

Here, we collect some basic statements of the Besov space. Let ϕ ∈ S(Rn) satisfy ϕ̂ ≥ 0 and supp ϕ̂ ⊂
{ξ ∈ Rn|1/2 < |ξ| < 2} and

∞∑
j=−∞

ϕ̂(2−jξ) = 1

if ξ ̸= 0. We denote ϕj as 2jnϕ(2j ·). Then, for s ∈ R, 1 ≤ p, q ≤ ∞, we define the inhomogeneous Besov
space of order s based on Lp(Rn) as

{f ∈ S∗(Rn)/P(Rn) | (2sj∥ϕj ∗ f∥Lp(Rn))j∈Z ∈ lq},

and denote it as Ḃs
p,q(Rn). We also define the norm of Ḃs

p,q(Rn) as

∥f∥Ḃs
p,q(Rn) = ∥2sj∥ϕj ∗ f∥Lp(Rn)∥lqj .
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Lemma 1.3.13 ([6]). For any s ∈ R and 1 ≤ p ≤ ∞, Ḃs
p,q0 ↪→ Ḃs

p,q1 if 1 ≤ q0 < q1 ≤ ∞. Moreover,

for any s ∈ R, Ḣs(Rn) ∼ Ḃs
2,2(Rn).

Lemma 1.3.14 ([35]). Let F ∈ C1(C,C) satisfy F (0) = Fz(0) = Fz(0) = 0 and assume that for p ≥ 1,

max(|Fz(z1)− Fz(z2)|, |Fz(z1)− Fz(z2)|)

≤

{
C|z1 − z2|max(|z1|, |z2|)p−2 if p ≥ 2,

C|z1 − z2|p−1 if 1 < p < 2
(1.3.4)

for all z1, z2 ∈ C, where Fz = 1
2 (

∂
∂xF − i ∂

∂yF ) and Fz = 1
2 (

∂
∂xF + i ∂

∂yF ) with x = Re z and y = Im z.

Let 0 ≤ s < min{2, p} and 1 ≤ l, r, q ≤ ∞ with (p− 1)/q = 1/l − 1/r. Then

∥F (f)∥Ḃs
l,2(R)

≤ C∥f∥Ḃs
r,2(R)

∥f∥p−1
Lq(R).

We remark that |z|p−1z and |z|p satisfy (1.3.4) since

∂

∂x
|z|p−1z = |z|p−1 + (p− 1)x|z|p−3z,

∂

∂y
|z|p−1z = i|z|p−1 + (p− 1)y|z|p−3z,

∂

∂x
|z|p = px|z|p−2,

∂

∂y
|z|p = py|z|p−2,

and with a ∈ R

||z1|a − |z2|a| =
⏐⏐⏐⏐a ∫ 1

0

((1− θ)|z1|+ θ|z2|)a−1dθ(|z1| − |z2|)
⏐⏐⏐⏐

≤ (|z1|+ |z2|)a−1|z1 − z2|.

1.4 Earlier Works

Here, we introduce some earlier works for the well-posedness of the Cauchy problem for semirelativistic
equation with power type nonlinearity in the case of R. By using the Duhamel’s formula, (SR) is
rewritten into the following integral equation:

u(t) = U(±t)u0 − i

∫ t

0

U(±(t− t′))F (u(t′))dt′, (ISR)

where U(t) is a semirelativistic propagator defined by U(t) = exp(it(m2 −∆)1/2). If F (z) = λ|z|p−1z
or λ|z|p with p ≥ 1 and 1/2 < s < min(2, p), then for any λ, (ISR) is time-locally well-posed. Moreover,
if F (z) = λzazb with non-negative integers a, b and s > 1/2, then for any λ, (ISR) is time-locally
well-posed. These time-local well-posedness are obtained by standard contraction argument based on
Hs(R). In particular, we can show that the solution map of (ISR) is a contraction map on Hs(R) by
the unitarity of U(t) in Hs(R) and Lemmas 1.3.10, 1.3.11, and 1.3.14. Moreover, in [15], Borgna and
Rial showed that if F (z) = |z|2z and s > 1/2, then (ISR) is time-globally well-posed. In [62], Krieger,
Lenzmann, and Raphaël showed that if F (z) = |z|2z and s ≥ 1/2, then (ISR) is time-globally well-posed.
In [15, 62], they extend time-local Hs(R) valued solutions with s > 1/2 by conserved energy and Lemma
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1.3.12. Moreover, Krieger, Lenzmann, and Raphaël obtained H1/2(R) valued time-global solutions by
limits of sequences of smooth approximating solutions. However, we remark that contraction argument
based on Lemmas 1.3.10, 1.3.11, and 1.3.14 is not applicable in the Hs(Rn) setting with s ≤ n/2, where
n ∈ N. It is because that although the uniform control of solutions is necessary for the construction, it
is impossible to control solutions uniformly only by Hs(Rn) norm of solutions with s ≤ n/2.

On the other hand, for F (z) = λ|z|p or λ|z|p−1z or λzp or λzp, (SR) is invariant under the following
scaling transformation:

uρ(t, x) = ρ
1

p−1u(ρt, ρx)

with ρ > 0. Then p
(SR)
n,s is called a scaling critical exponent corresponding to Ḣs(Rn) if

∥uρ(0)∥Ḣs(Rn) = ρ
1

p−1+s−n
2 ∥u0∥Ḣs(Rn) = ∥u0∥Ḣs(Rn)

for any ρ > 0 with p = p
(SR)
n,s . In this case,

p(SR)
n,s = 1 +

2

n− 2s

and the regularity s
(SR)
n,p corresponding to p

(SR)
n,s is given by

s(SR)
n,p =

n

2
− 1

p− 1
. (1.4.1)

Based on this scaling criticality, we classify Cauchy problems into three. A Cauchy problem is called

Hs supercritical if p > p
(SR)
n,s . We call a Cauchy problem Hs critical if p = p

(SR)
n,s . A Cauchy problem

is also called Hs subcritical if p < p
(SR)
n,s . From the view point of the regularity, we call our problem

supercritical if s < s
(SR)
n,p , critical if s = s

(SR)
n,p , subcritical if s > s

(SR)
n,p . On the analogy of the Schrödinger

and Klein-Gordon equations, in subcritical and critical cases, (SR) is expected time-locally well-posed.
From the view point of scaling criticality, in [55], Inui showed that for F (z) = λ|z|p, inHs subcritical and
critical cases, there exists no time-global solutions for some Hs initial data. He also shows that in Hs

supercritical, there exists no time-local solutions for some Hs initial data. However, in some subcritical
and critical case, the solvability, well-posedness, and ill-posedness of (SR) had not been shown.

1.5 Main Statement

The aim of this thesis is to obtain the lowest regularity s with which (SR) is solvable or well-posed in the
frame work of Hs(R) in one spacial dimension case. Since (SR) has the invariant scaling transformation,
the scaling critical exponent seems to give the sharp criteria for the solvability and time-local well-

posedness. However, at least in the case of R, there is a gap between s
(SR)
n,p and 1/2 with which (SR) is

proved to be time-globally well-posed in the prior works. To consider the solvability and well-posedness
for sn,p ≤ s ≤ 1/2, we need more sharp linear estimate for U(t), a priori estimate of energy, and
nonlinear estimate for F (z).

At first, to obtain the solvability and well-posedness of (SR) for s < 1/2, we focus on nonlinear
interaction. Here, in order to consider a sharp nonlinear estimate with simple nonlinearities, we put
F (z) = λzazb with λ ∈ C\{0} and (a, b) = (2, 0) or (1, 1) or (0, 2). Then, we have the following sharp
criteria to construct time-local solutions by iteration scheme.

Theorem 1. (SR) with λ ∈ C\{0} and F (z) = λz2 is time-locally well-posed if s ≥ 0. If −1/2 < s < 0,
then for initial data u0 satisfying

u0 = F−1[χ[1,∞)⟨·⟩−1/2−s−ε] ∈ Hs(R)\L2(R)
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with 0 < ε < −2s/3,∫ t

0

U(±(t− t′))

(
U(±t′)u0

∫ t′

0

U(±((t′′ − t′))(U(±t′)u0)2dt′′
)
dt′ ̸∈ Hs(R). (1.5.1)

Therefore, the solution map of (SR) with F (z) = λz2 is not C3. If s < −1/2, then for a sequence of
initial datum u0,k defined by

u0,k = n−sF−1[χ[−1,1](· − k) + χ[−1,1](·+ k)],

there exists C > 0 such that for any k, ∥u0,k∥Hs ≤ C and for some t > 0,

lim sup
k→∞

∫ t

0

U(±(t− t′))U(±t′)u0,k
2
dt′

Hs(R)

= ∞. (1.5.2)

Therefore, the solution map of (SR) with F (z) = λz2 is not C2.
In addition, if −1/2 < s < 1/2, then for initial data u0 satisfying

u0 = F−1[χ[0,∞)⟨·⟩−1/2−s−ε] ∈ Hs(R)\H1/2(R)

with 0 < ε < 1/6− s/3, ∫ t

0

U(±(t− t′))
(
U(±t′)u0U(±t′)u0

)
dt′ ̸∈ Hs(R), (1.5.3)∫ t

0

U(±(t− t′))
(
(U(±t′)u0)2

)
dt′ ̸∈ Hs(R). (1.5.4)

Therefore, the solution map of (SR) with F (z) = λ|z|2 and λz2 are not C2. If s < −1/2, then for a
sequence of initial datum u0,k defined by

u0,k = n−sF−1[χ[−1,1](· − k)]

and for some t > 0

lim sup
k→∞

∫ t

0

U(±(t− t′))
(
U(±t′)u0,kU(±t′)u0,k

)
dt′

Hs(R)

= ∞, (1.5.5)

lim sup
k→∞

∫ t

0

U(±(t− t′))
(
(U(±t′)u0)2

)
dt′

Hs(R)

= ∞. (1.5.6)

Therefore, the solution map of (SR) with F (z) = λ|z|2 and λz2 are not C2.

Remark 1.5.1. We remark that (1.5.1), (1.5.2), (1.5.3), (1.5.4), (1.5.5), and (1.5.6) imply that the
associated solution maps are not C3, C2, C2, C2, C2, and C2 respectively, since we can regard (SR) as
(1.3.1) with L(u0)(t) = U(±t)u0 and

N(u)(t) =

∫ t

0

U(±(t− t′))F (u(t′))dt′.

With X0 = Hs(R), X = C([0, T );Hs(R)), these discontinuity results are obtained.
(SR) with F (z) = λz2 is quantitatively well-posed in L2(R) and C([0, T ];L2(R)) for some T > 0.

(SR) with F (z) = λz2 and λ|z|2 are also quantitatively well-posed in Hs(R) and C([0, T ];Hs(R)) for
s > 1/2 and some T > 0. However, Lemma 1.3.5 is not applicable to these Cauchy problems to show
their ill-posedness with the sequences of initial data above. It is because the sequences of initial data in
Theorem 1 are not bounded in associated spaces of initial data, in which (SR) is quantitatively well-posed.
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The well-posedness in Theorem 1 follows from a sharp bilinear estimate of the Fourier restriction
norm. On the other hand, (1.5.1), (1.5.2), (1.5.3), (1.5.4) (1.5.5), and (1.5.6) follow from direct calcula-
tions. Especially to calculate (1.5.1) and (1.5.3), we use a special cancellation of spacial frequency. This
cancellation makes (SR) with quadratic nonlinearity not be solvable with iteration argument even in

the scaling subcritical case, where s
(SR)
1,2 = −1/2. Moreover, a similar phenomena of Theorem 1 occurs

in the case of the Cauchy problem for semilinear systems. We discuss the case of semilinear systems in
Appendix A.1. We remark that the smoothness of solution maps in the H−1/2(R) setting is still not
shown.

At second, we revisit the construction of solutions by a priori energy estimate. Here, we put F (z) =
λ|z|p−1z with 1 < p ≤ 3 and consider (SR) in the H1/2(R) setting. We remark that for any n ∈ N,
the charge and energy of (SR) with F (z) = λ|z|p−1z correspond to L2(Rn) and H1/2(Rn), respectively.
We also remark that in the Hs(R) setting with s > 1/2, the time-local well-posedness follows from
the unitarity of U(±t) and the Sobolev embedding L∞ ↪→ Hs(R). On the other hand, in the H1/2(R)
setting, it is impossible to show the time-local well-posedness by the unitarity of U(±t) since H1/2(R)
is not embedded into L∞(R). However, by using the energy conservation, we obtain the following
well-posedness result.

Theorem 2. (SR) with F (z) = λ|z|p−1z is time-globally well-posed in the H1/2(R) setting if

• 1 < p ≤ 3 and λ ≤ 0,

• 1 < p < 3 and λ > 0,

• p = 3, λ > 0, and ∥u∥L2(R) ≪ 1.

Remark 1.5.2. The condition in Theorem 2 is is for controlling H1/2(R) norm of solutions uniformly
in time by the conserved energy.

Theorem 2 follows from a priori estimate of solutions. Kenig, Ponce, and Vega obtained the same
result when p = 3 by using the compactness argument based on Lemma 1.3.2. On the other hand,
Theorem 2 may be shown by more direct way based explicitly on completeness of L2(R). To simplify
the construction of solutions, here, the Yosida type smoothness operator plays an important role. In
particular, a sequence of approximation solutions connected with Yosida type smoothness operator is
shown to be a Cauchy sequence in L2(R) and the limit of the sequence is a time-global solution.

We remark that if F (z) = λ|z|2z, then from a similar calculation to (1.5.1), the solution map is
shown to be not C3 in the Hs(R) setting with −1/2 < s < 1/2. This means, in this case, H1/2(R) gives
the sharp criteria so that for any Hs(R) initial data, the associated time local solutions can be obtained

by iteration scheme. We also remark that s
(SR)
1,3 = 0.

At last, we consider the solvability of (SR) with F (z) = λ|z|p. In Theorem 1, it is asserted that
if p = 2 and s ∈ (−∞,−1/2) ∪ (−1/2, 1/2), then it is impossible to construct solutions by a standard
iteration scheme in the Hs(R) setting. But Theorem 1 doesn’t imply that there is no time-local solutions

in this case. We remark that for any p > 1, s
(SR)
1,p < 1/2. In supercritical case: s < s

(SR)
1,p , Inui showed

that there exist no weak time-local solutions for some Hs(R) initial data in [55], but if s
(SR)
1,p < s < 1/2,

then there expected to be time-local solutions to (SR). Here, we show that there exist no weak time-local
solutions with some H1/2(R) initial data. To state our statement clearly, we define the weak time-local
solutions for (SR) with F = λ|z|p. For T > 0, we define function spaces A and AT for T > 0 as follows:

A = C([0,∞);H2(R;R)) ∩ C1([0,∞);H1(R;R)),
AT = {ψ ∈ X; suppψ ⊂ (−∞, T )× R}.

Let (· | ·) be the usual L2(R) scalar product defined by (f | g) =
∫
R fg. Then we define weak time-local

solutions to (SR) as follows:
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Definition 1.5.3. Let F (z) = λ|z|p with λ ∈ C\{0} and p > 1. Let T > 0 and u0 ∈ L1
loc(R). We say

that u is a time-local weak solution to (SR), if u belongs to L1
loc([0, T );L

p(R)) and the following identity∫ T

0

(
u(t)

⏐⏐i∂tψ(t)± (m2 −∆)1/2ψ(t)
)
dt = i(u0|ψ(0)) + λ

∫ T

0

(
|u(t)|p

⏐⏐ψ(t))dt
holds for any ψ ∈ AT , where the double-sign corresponds to the sign of (SR).

With this weak time-local solutions, we have the following:

Theorem 3. Let F (z) = λ|z|p with λ ∈ C\{0} and p > 1. Then for any f ∈ L1
loc(R) satisfying

∃δ > 0 s.t. f > 0 on (−δ, δ),
f is decreasing on (0, δ),

lim
ε↘0

f(ε) = ∞,

there exists no T > 0 such that there exists a local weak solution to (SR) with u0 = −iλf .

Remark 1.5.4. We remark that

f(x) =

∞∑
m=1

1

m
e−4mx2

cos(2mx)

belongs to H1/2(R) and satisfies the condition of Theorem 3. For the details of the character of f , we
refer the reader to [84]. This implies that Theorem 3 also asserts that for some H1/2(R) initial data,
there exist no weak time-local solutions to (SR) with F = λ|z|p. We also remark that for s > 1/2, there
exists no Hs(R) function with a singularity at the origin, since Hs(R) ↪→ L∞(R).

If the Duhamel term of semirelativistic equation has smoothness property like that of Schrödinger

or Klein-Gordon equations, then even in the Hs(R) setting with s
(SR)
1,p < s ≤ 1/2, we have time-local

solution to (SR) for any Hs(R) initial data. Theorem 3 also implies that at least in the case of R, the
Duhamel term doesn’t have a similar smoothness property to construct time-local solution.

Theorem 3 follows from a test function method which is introduced by Zhang in [93, 94]. To apply the
test function method, we deform (SR) in order to cancel the non-locality of (m2−∆)1/2, since pointwise
estimates of test functions are necessary for test function methods. Moreover, we use a special sequence
of test functions introduced by a study of the non-existence of solutions of an advection equations so
that we obtain the non-existence of weak time-local solutions to (SR) in scaling subcritical case.

1.6 Outline

At the end of this chapter, we give a brief outline of this thesis. In Chapter 2, we give an explanation of
Fourier restriction method and proof of Theorem 1. In Chapter 3, we prove a priori estimates for charge
and energy of solutions to (SR) and we prove Theorem 2. In Chapter 4, we explain how to deform
(SR) in order to cancel (m2 −∆)1/2 and show Theorem 3 with a special sequence of test functions. In
Appendix A.1, we study the semirelativistic system by revisiting Fourier restriction method and a priori
estimate. In Appendix A.2, we give an simple proof of Lemma 1.3.11 from the view point of weighted
integral inequality and discuss about the condition of weights so that the associated integral inequality
holds. In Appendix A.3, we show the sharp bilinear estimate of Hs(Rn) norm, fractional Leibniz rule,
from the view point of Fourier multiplier.
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Chapter 2

Well-Posedness of (SR) with
Quadratic Nonlinearity

2.1 Introduction

In this chapter, we study the following Cauchy problems of semirelativistic equations:{
i∂tu± (m2 −∆)1/2u = λu2, t ∈ [0, T ], x ∈ R,
u(0) = u0, x ∈ R,

(2.1.1){
i∂tu± (m2 −∆)1/2u = λ|u|2, t ∈ [0, T ], x ∈ R,
u(0) = u0, x ∈ R,

(2.1.2){
i∂tu± (m2 −∆)1/2u = λu2, t ∈ [0, T ], x ∈ R,
u(0) = u0, x ∈ R

(2.1.3)

with λ ∈ C\{0}.
The purpose of this chapter is to show the criteria of the order of the Sobolev spaces with which

each time-local solutions of (2.1.1), (2.1.2), and (2.1.3) can be constructed by contraction argument.
To motivate our problem, we revisit the earlier works: [13, 15, 62, 73]. Borgna and Rial studied the

Cauchy problem for a single semirelativistic equation with cubic nonlinearity in [15] and they proved
the existence of time-global solutions in the Hs(R) setting with s > 1/2. The method of their proof
depends essentially on the Sobolev embedding Hs(R) ↪→ L∞(R). In the case where s ≤ 1/2, however,
the method loses its meaning because the uniform control by Hs norm breaks down. In the limiting
case s = 1/2, a Vladimirov type argument [76, 77, 92] implies that the uniqueness of weak solutions
constructed by a compactness argument, see [62]. Meanwhile, Strichartz type estimates are known to
be sharper linear estimate for Duhamel term but we remark that Strichartz type estimates are not
sufficient for a contraction argument unless the uniform control by Hs norm is available. A similar
situation happens in the case of nonlinear Dirac equations in space dimensions n ≥ 2 [14, 30, 70, 71, 72].
We neither can not apply the Delgado-Candy trick which is the special technique for the Dirac equation
in one dimension. This technique depends on algebraic structure of the Dirac equation to divided
solutions into free solution part and uniform bounded part. However, the semirelativistic equation does
not have the algebraic structure. See [13, 73].

From the view point of scaling criticality, (2.1.1), (2.1.2), and (2.1.3) are expected to be time-locally

well-posed in the Hs(R) setting with s > s
(SR)
1,2 = −1/2. By focusing on the structure of nonlinearity,

we have the following results:

17
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Theorem 2.1.1. (2.1.1) is time-locally well-posed if s ≥ 0. Moreover, T (s) = T (0), where T (s) is the
maximal existence time of solutions defined by

T (s) = T (s, u0) = sup
{
T > 0 | sup

0<t<T
∥u(t) : Hs∥ <∞

}
.

Theorem 2.1.2. The solution map of (2.1.1) is not C3 in the Hs(R) setting with −1/2 < s < 0. In
particular, if −1/2 < s < 0, then for initial data

u0 = F−1[χ[1,∞)⟨·⟩−1/2−s−ε] ∈ Hs(R)

with 0 < ε < −2s/3,∫ t

0

U(±(t− t′))

(
U(±t′)u0

∫ t′

0

U(±((t′′ − t′))(U(±t′′)u0)2dt′′
)
dt′ ̸∈ Hs(R). (2.1.4)

Theorem 2.1.3. The solution map of (2.1.1) is not C2 in the Hs(R) setting with s < −1/2. In
particular, if s < −1/2, then for a sequence of initial datum u0,k defined by

u0,k = k−sF−1[χ[−1,1](· − k) + χ[−1,1](·+ k)],

then there exists C > 0 such that for any k, ∥u0,k∥Hs(R) ≤ C and

lim sup
k→∞

∫ t

0

U(±(t− t′))U(±t′)u0,k
2
dt′

Hs(R)

= ∞. (2.1.5)

Theorem 2.1.4. The solution maps of (2.1.2) and (2.1.3) are not C2 in the Hs(R) setting with −1/2 <
s < 1/2. In particular, if −1/2 < s < 1/2, then for initial data

u0 = F−1[χ[0,∞)⟨·⟩−1/2−s−ε] ∈ Hs(R)

with 0 < ε < 1/6− s/3, ∫ t

0

U(±(t− t′))
(
U(±t′)u0U(±t′)u0

)
dt′ ̸∈ Hs(R), (2.1.6)∫ t

0

U(±(t− t′))
(
(U(±t′)u0)2

)
dt′ ̸∈ Hs(R). (2.1.7)

Theorem 2.1.5. The solution map of (2.1.1) is not C2 in the Hs(R) setting with s < −1/2. In
particular, if s < −1/2, then for a sequence of initial datum u0,k defined by

u0,k = k−sF−1(χ[−1,1](ξ − k))

then there exists C > 0 such that for any k, ∥u0,k∥Hs ≤ C and

lim sup
k→∞

 ∫ t

0

U(±(t− t′))
(
U(±t′)u0U(±t′)u0

)
dt′

Hs(R)

= ∞,

lim sup
k→∞

∫ t

0

U(±(t− t′))
(
(U(±t′)u0)2

)
dt′

Hs(R)

= ∞.
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The well-posedness of (2.1.1) follows from Fourier restriction method which is introduced Bourgain
in [9, 10, 11]. It is natural to introduce Fourier restriction method to study (2.1.1),(2.1.2), and (2.1.3)
in the Hs setting with 0 ≤ s ≤ 1/2. It is because Strichartz type estimates are not sufficient to study
(2.1.1),(2.1.2), and (2.1.3) and therefore it seems difficult to improve linear estimates for their Duhamel
terms. In addition, the charge and energy of solutions to (2.1.1),(2.1.2), and (2.1.3) are not conserved.
Therefore, we don’t expect compactness argument helpful to study them. The Fourier restriction method
is a method to study (SR) with Fourier restriction norms defined below. We can estimate nonlinearity
sharply with Fourier restriction norm, since Fourier restriction norm is a L2 norm weighted by Fourier
multipliers with regard to the main part of the Cauchy problem. In particular, one can easily see the
nonlinear interaction of each of frequencies of time and space by these Fourier multipliers. However,
in the L2(R) setting, we see that it seems difficult to construct time-local solutions to (2.1.1) based
only on the Fourier restriction norm, by showing the failure of the corresponding nonlinear estimates.
Therefore, we also introduce auxiliary norms below.

The non-smoothness of solution maps follows from direct calculations of Duhamel term with linear
solution. We remark that Theorem 2.1.5 is shown by a similar method to the proof of Theorem 2.1.3,
so we omit the proof of Theorem 2.1.5.

The rest of this chapter is organized as follows. In section 2.2, we give notation and collect basic
facts. In section 2.3, we show Theorem 2.1.1 with Fourier restriction method. In section 2.4, we show
Theorem 2.1.2. In section 2.5, we show Theorem 2.1.3. In section 2.6, we show Theorem 2.1.4.

2.2 Preliminary

2.2.1 Notation

For u : R2 ∋ (t, x) ↦→ u(t, x) ∈ C, let

ũ(τ, ξ) =
1√
2π

∫
R
û(t, ξ) exp(−itτ)dt.

For m ≥ 0, s, b ∈ R, T0 ∈ R, and T > 0, we define Fourier restriction norms as follows:

∥u∥Xs,b
m,±

= ∥⟨ξ⟩s⟨τ ±
√
m2 + ξ2⟩bũ∥L2(R×R),

∥u∥Xs,b
m,±[T0,T0+T ]

= inf

{
∥u′∥Xs,b

m,±

⏐⏐⏐⏐ u′(t, x) = u(t, x) on [T0, T0 + T ]× R,
supp u′ ⊂ [T0 − 2T, T0 + 2T ]× R

}
,

∥u∥X′s,b
m,±[T0,T0+T ]

= inf
{
∥u′∥Xs,b

m,±

⏐⏐⏐ u′(t, x) = u(t, x) on [T0, T0 + T ]× R
}
.

We also define auxiliary norms as follows:

∥u∥Y s
m,±

= ∥⟨ξ⟩s⟨τ ±
√
m2 + ξ2⟩−1ũ∥L2(Rξ;L1(Rτ )),

∥u∥Y s
m,±[T0,T0+T ]

= inf

{
∥u′∥Y s

m,±

⏐⏐⏐⏐ u′(t, x) = u(t, x) on [T0, T0 + T ]× R,
supp u′ ⊂ [T0 − 2T, T0 + 2T ]× R

}
,
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where

∥f(τ, ξ)∥L2(Rξ;L1(Rτ )) =

(∫
R

(∫
R
|f(τ, ξ)|dτ

)2

dξ

)1/2

.

We define a norm space Xs,b
m,± as follows:

Xs,b
m,± = {u ∈ L2(R× R) | ∥u∥Xs,b

m,±
<∞}.

We also define Xs,b
m,±[T0, T0+T ], X

′s,b
m,±[T0, T0+T ], Y

s
m,±, and Y

s
m,±[T0, T0+T ] similarly. We abbreviate

these spaces as : Xs,b
± = Xs,b

0,±, Y
s
± = Y s

0,±.
Let ψ be a smooth function with 0 ≤ ψ ≤ 1, ψ(t) = 1 if |t| ≤ 1 and ψ(t) = 0 if |t| ≥ 2. For T > 0,

let ψT (t) = ψ(T−1t).

2.2.2 Basic Characteristics of Fourier Restriction Norms

Here we collect some basic facts of Fourier restriction norms and auxiliary norms.

Lemma 2.2.1. For any s, b ≥ 0, T > 0 and m,T0 ∈ R, Xs,b
m,± and Xs,b

m,±[T0, T0+T ] are Banach spaces.

proof. For any s, b ≥ 0, and m ∈ R,

⟨ξ⟩−s⟨τ ±
√
m2 + ξ2⟩−bL2(R× R)

= {f ∈ L2(R× R) | ∥f∥⟨ξ⟩−s⟨τ±
√

m2+ξ2⟩−bL2(R×R) <∞}

is a Banach space, where

∥f∥⟨ξ⟩−s⟨τ±
√

m2+ξ2⟩−bL2(R×R) = ∥⟨ξ⟩s⟨τ ±
√
m2 + ξ2⟩bf∥L2(R×R).

Indeed, let (fj)j∈N is a Cauchy sequence in ⟨ξ⟩−s⟨τ±
√
m2 + ξ2⟩−bL2(R×R), then (⟨ξ⟩s⟨τ±

√
m2 + ξ2⟩bfn)n∈N

converges a L2 function F in L2(R × R). Then ⟨ξ⟩−s⟨τ ±
√
m2 + ξ2⟩−bF is the limit of (fj)j∈N in

⟨ξ⟩−s⟨τ ±
√
m2 + ξ2⟩−bL2(R × R). Since Xs,b

m,± is the set of the inverse Fourier transformations of all

elements of ⟨ξ⟩−s⟨τ ±
√
m2 + ξ2⟩−bL2(R× R), Xs,b

m,± is also a Banach space. On the other hand,

B = {f ∈ L2(R× R) | supp f ⊂ [T0 − 2T, T0 + 2T ]× R}

is also shown to be a closed subspace of L2(R × R) as follows. Let (fj)j∈N ⊂ B, f ∈ L2(R × R) be
the limit of (fj)j∈N. Let ζ ∈ C∞(R × R) satisfy ζ = 0 on [T0 − 2T, T0 + 2T ] × R and ζ > 0 on
[T0 − 2T, T0 + 2T ]c × R. Then for any ζ ′ ∈ C∞(R× R) satisfying supp ζ ′ ⊂ [T0 − 2T, T0 + 2T ]c × R,⏐⏐⏐⏐ ∫

R

∫
R
ζfζ ′ dt dx

⏐⏐⏐⏐ = lim
n→∞

⏐⏐⏐⏐ ∫
R

∫
R
ζ(f − fn)ζ

′ dt dx

⏐⏐⏐⏐
≤ lim

n→∞
∥ζ ′∥L2(R×R)∥f − fn∥L2(R×R)

= 0.

Therefore, f ∈ B and B is closed. Similarly

M = {f ∈ L2(R× R) | supp f ⊂ [T0, T0 + T ]c × R}

is also closed subspace of L2(R × R). Then, since Xs,b
m,± ↪→ L2(R × R), (B ∩ Xs,b

m,± ; ∥ · ∥Xs,b
m,±

)

is also a Banach space and B ∩ M ∩ Xs,b
m,± is a close subspace of (B ∩ Xs,b

m,±). By Lemma 1.3.2,

Xs,b
m,±[T0, T0 + T ] = (B ∩Xs,b

m,±)\(B ∩M ∩Xs,b
m,±) is also a Banach space. Q.E.D.
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Lemma 2.2.2. If u ∈ Xs,b
m,±, then u ∈ Xs,b

m,∓.

proof. Since

F[f ](ξ) =
1√
2π

∫
R
feixξdx =

1√
2π

∫
R
fe−ixξdx = Ff(−ξ)

we are done. Q.E.D.

Due to the next lemma, we may put m = 0 with respect to the Fourier restriction and auxiliary
norms without loss of generality.

Lemma 2.2.3. For any m,M ∈ R, Xs,b
m,± ≃ Xs,b

M,±, Y
s
m,± ≃ Y s

M,± with equivalent norms.

proof. The lemma follows from the following inequality:

⟨τ ±
√
m2 + ξ2⟩

⟨τ ±
√
M2 + ξ2⟩

≤ 1 +

⏐⏐⏐⏐⏐ ⟨τ +
√
m2 + ξ2⟩ − ⟨τ +

√
M2 + ξ2⟩

⟨τ ±
√
M2 + ξ2⟩

⏐⏐⏐⏐⏐
= 1 +

⏐⏐⏐⏐|τ ±√m2 + ξ2| − |τ ±
√
M2 + ξ2|

⏐⏐⏐⏐
⟨τ ±

√
M2 + ξ2⟩

≤ 1 + |m−M |

for any ξ, τ ∈ R. Q.E.D.

2.2.3 Linear Estimates

Here we collect some linear estimates with Xs,b
m,± and Y s

m,±.

Lemma 2.2.4 ([36, (2.19)]). Let m ∈ R. For any s, b ≥ 0 and u0 ∈ Hs,

∥ψ(t)U(±t)u0∥Xs,b
m,∓

= ∥ψ∥Hb∥u0∥Hs . (2.2.1)

In addition, for any 0 < T < 1,

∥ψT (t)U(±t)u0∥Xs,1/2
m,∓

≲ ∥u0∥Hs . (2.2.2)

proof. The equality (2.2.1) follows from

1√
2π

∫
R
exp(−itτ)ψ(t)F[U(±t)u0]dt

=
1√
2π

∫
R
exp(−it(τ ∓

√
m2 + ξ2))ψ(t)û0(ξ)dt

= ψ̂(τ ∓
√
m2 + ξ2)û0(ξ).

The estimate (2.2.2) follows form

∥ψT ∥H1/2(R) ≤ ∥ψT ∥L2(R) + ∥ψT ∥Ḣ1/2(R)

= T 1/2∥ψ∥L2(R) + ∥ψ∥Ḣ1/2(R)

≤ ∥ψ∥H1/2(R).

Q.E.D.
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Proposition 2.2.1 ([36, Lemma 2.1.]). Let m ∈ R, 0 < T ≤ 1 and let s ≥ 0. Then,ψT (t)

∫ t

0

U(±(t− t′))F (t′) dt′

X

s,1/2
m,∓

≲ ∥F∥
X

s,−1/2
m,∓ ∩Y s

m,∓

for F ∈ X
s,−1/2
m,∓ ∩ Y s

m,∓. In addition, let δ ≥ 0 and b satisfy −1/2 < b− 1 + δ ≤ 0 ≤ b. Then,ψT (t)

∫ t

0

U(±(t− t′))F (t′) dt′

Xs,b

m,∓

≲ T δ∥F∥Xs,b−1+δ
m,∓

for F ∈ Xs,b−1+δ
m,∓ .

Lemma 2.2.5 ([36, Lemma 2.2.]). Let m ∈ R. If F ∈ Y s
m,±, then

∫ ·
0
Um(· − t′)F (t′)dt′ ∈ C(R;Hs) and

it satisfies the estimate ∫ ·

0

U(±(· − t′))F (t′)dt′

C(R:Hs)

≲ ∥F∥Y s
m,∓

.

To extract a positive power of T , we use the following lemma.

Lemma 2.2.6 ([36, Lemma 3.1.]). Let s ∈ R, 0 ≤ b ≤ b′, T > 0 and let f ∈ Xs,b′

± satisfy suppf ⊂
[−T, T ]× R. Then,

∥f∥Xs,b
±

≲ T γ(b′,b)∥f∥
Xs,b′

±
,

where

γ(b′, b) =

⎧⎪⎪⎨⎪⎪⎩
b′ − b if b′ < 1/2,

b′ − b+ ε if b′ = 1/2,

1/2− b/2b′ if b′ > 1/2

with ε > 0 sufficiently small.

proof. By the Hölder inequality,

∥⟨ξ⟩s⟨τ ± |ξ|⟩bf̃∥L2(R×R)

≤
{⟨ξ⟩s⟨τ ± |ξ|⟩b

′
f̃
}b/b′

L2b′/b(R×R)

{⟨ξ⟩sf̃}1−b/b′
L2b′/(b′−b)(R×R)

= ∥f∥b/b
′

Xs,b′
±

∥⟨ξ⟩sf̂∥L2([−T,T ]×R).

If b′ > 1/2, then

∥⟨ξ⟩sf̂∥L2([−T,T ]×R) ≲ T 1/2∥⟨ξ⟩sf̂∥L2(Rξ;L∞(Rt))

≤ T 1/2∥⟨ξ⟩sf̃∥L2(Rξ;L1(Rτ ))

≲ T 1/2∥f∥
Xs,b′

±
.

Moreover, if b′ < 1/2, then by the unitarity of U and the Sobolev embedding,

∥⟨ξ⟩sFx[f ]∥L2(R×R) = ∥⟨ξ⟩sFx[U(±t)f ]∥L2(R×R)

≲ T b′∥⟨ξ⟩sFx[U(±t)f ]∥L2(Rξ;L2/(1−2b′)(Rt))

≲ T b′∥⟨ξ⟩sFx[U(±t)f∥L2(Rξ;Hb′ (Rt))

= T b′∥f∥
Xs,b′

±
.
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In the case b′ = 1/2, for any ε > 0,

∥⟨ξ⟩sFx[f ]∥L2(R×R) ≲ T 1/2−ε∥f∥
X

s,1/2−ε
±

≤ T 1/2−ε∥f∥
X

s,1/2
±

Q.E.D.

2.2.4 Bilinear and Trilinear Estimates

In this section, we derive nonlinear estimates for Xs,b
m,± and Y s

m,± by the method originally proposed in
[86].

Lemma 2.2.7. Let p ≥ 1 and let α, β, γ ≥ 0 satisfy α + β + γ > 1/p. Then, there exists a positive
constant C such that the inequality

∥⟨·+ δ1⟩−αf ∗ g∥Lp(R) ≤ ∥⟨·+ δ2⟩βf∥L2(R)∥⟨·+ δ3⟩γg∥L2(R)

holds for any real numbers δ1, δ2, δ3 and any f , g such that all the norms on the right hand side are
finite.

proof. By the Hölder and Young inequalities,

∥⟨·+ δ1⟩−αf ∗ g∥Lp(R)

≤ ∥⟨·⟩−α∥
Lp

α+β+γ
α (R)

∥f ∗ g∥
L

p
α+β+γ
β+γ (R)

≤ ∥⟨·⟩−1∥αLp(α+β+γ)(R)∥f∥
L

1
1
2
+

β
p(α+β+γ) (R)

∥g∥
L

1
1
2
+

γ
p(α+β+γ) (R)

≤ ∥⟨·⟩−1∥α+β+γ
Lp(α+β+γ)(R)∥⟨·+ δ2⟩βf∥L2(R)∥⟨·+ δ3⟩γg∥L2(R),

where if the denominator of an exponent is 0, we interpret the exponent as ∞. Then, we obtain the
lemma. Q.E.D.

Lemma 2.2.8. Let p and α satisfy p ≥ 1 and 0 ≤ α ≤ 1/p. Let β, γ, κ satisfy 0 ≤ β, γ, κ ≤ 1/2 and
α+ β + γ + κ > 1/p+ 1/2. Then, there exists a positive constant C such that the inequality

∥⟨·+ δ1⟩−αf ∗ g ∗ h∥Lp(R)

≤ C∥⟨·+ δ2⟩βf∥L2(R)∥⟨·+ δ3⟩γg∥L2(R)∥⟨·+ δ4⟩κh∥L2(R)

holds for any real numbers δ1, δ2, δ3, δ4 and any f , g, h such that all the norms on the right hand side
are finite.

proof. Let ε = α+ β + γ + κ− 1/p− 1/2. By the Hölder and the Young inequalities,

∥⟨·+ δ1⟩−αf ∗ g ∗ h∥Lp(R)

≲ ∥f ∗ g ∗ h∥Lp1 (R)

≲ ∥f∥Lp2 (R)∥g ∗ h∥Lp3 (R)

≲ ∥f∥Lp2∥g∥Lp4 (R)∥h∥Lp5 (R)

≲ ∥⟨·+ δ2⟩βf∥L2(R)∥⟨·+ δ3⟩γg∥L2(R)∥⟨·+ δ4⟩κh∥L2(R),
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where

1

p1
=

1

p
− α+

αε

α+ β + γ + κ
,

1

p2
=

1

2
+ β − βε

α+ β + γ + κ
,

1

p3
=

1

p1
+ 1− 1

p2
,

1

p4
=

1

2
+ γ − γε

α+ β + γ + κ
,

1

p5
=

1

2
+ κ− κε

α+ β + γ + κ
.

Therefore, we obtain the lemma. Q.E.D.

For s ≥ 0, we define λ(s) as

λ(s) =

{
0 if s < 1/2,

s− 1/2 + ε if s ≥ 1/2,
(2.2.3)

where ε > 0 is sufficiently small. Here we state our main nonlinear estimates.

Proposition 2.2.2. Let s ≥ 0 and 0 ≤ ρ < 1/2. Then, the inequality

∥uv∥
X

s,−1/2
+ ∩Y s

+
≲ ∥u∥

X
λ(s),1/2
−

∥v∥
X

s,1/2−ρ
−

+ ∥u∥
X

λ(s),1/2−ρ
−

∥v∥
X

s,1/2
−

(2.2.4)

holds for any u ∈ X
λ(s),1/2
− and v ∈ X

s,1/2
− .

We remark that the regularity λ(s) in the both terms of u on the right hand side is less than the
regularity s on the left hand side. Therefore, the estimate (2.2.4) with s > 0 does not follow directly
from (2.2.4) with s = 0 and the Peetre’s inequality: ⟨ξ⟩s′ ≲ (⟨ξ − η⟩s′ + ⟨η⟩s′) for s′ ≥ 0. We can
exchange the smoothness with respect to the space-time variables into the smoothness with respect to
the space variable by using (2.2.7) from the nice combination of signs in (2.2.4). This technique is found
in Lemma 5 of [86].

The symmetry inequality

∥uv∥
X

s,−1/2
− ∩Y s

−
≲ ∥u∥

X
λ(s),1/2
+

∥v∥
X

s,1/2−ρ
+

+ ∥u∥
X

λ(s),1/2−ρ
+

∥v∥
X

s,1/2
+

holds by (2.2.4) with taking complex conjugate of u and v.

proof. It is enough to show

∥uv∥
X

s,−1/2
+

≲ ∥u∥
X

λ(s),1/2
−

∥v∥
X

s,1/2−ρ
−

+ ∥u∥
X

λ(s),1/2−ρ
−

∥v∥
X

s,1/2
−

(2.2.5)

and

∥uv∥Y s
+
≲ ∥u∥

X
λ(s),1/2
−

∥v∥
X

s,1/2−ρ
−

+ ∥u∥
X

λ(s),1/2−ρ
−

∥v∥
X

s,1/2
−

. (2.2.6)

Let
M(τ, ξ, σ, η) = max

(⏐⏐τ + |ξ|
⏐⏐, ⏐⏐τ − σ − |ξ − η|

⏐⏐, ⏐⏐σ − |η|
⏐⏐).
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Then, the triangle inequality implies

|ξ|+ |ξ − η|+ |η| ≤ 3M(τ, ξ, σ, η). (2.2.7)

Also, we decompose the integral region as follows:

A1 = {(τ, ξ, σ, η) | M(τ, ξ, σ, η) =
⏐⏐τ + |ξ|

⏐⏐},
A2 = {(τ, ξ, σ, η) | M(τ, ξ, σ, η) =

⏐⏐τ − σ − |ξ − η|
⏐⏐},

A3 = {(τ, ξ, σ, η) | M(τ, ξ, σ, η) =
⏐⏐σ − |η|

⏐⏐}.
Then we show each of (2.2.5) and (2.2.6) in two different cases: where s > 0 and where s = 0.

(a) X norm estimate with s > 0.
By the Minkowski inequality,⟨ξ⟩s ∫∫

R2

⟨τ + |ξ|⟩−1/2χA1(τ, ξ, σ, η) ũ(τ − σ, ξ − η) ṽ(σ, η) dσdη


L2(Rτ×Rξ)

≲

∫
R
⟨·⟩s−1/2I1(·, η) dη


L2(R)

,

where

I1(ξ, η) =

∫
R

⏐⏐ũ(· − σ, ξ − η) ṽ(σ, η)
⏐⏐ dσ

L2(R)
.

By Lemma 2.2.7

I1(ξ, η) ≲
⟨· − |ξ − η|⟩1/2−ρũ(·, ξ − η)


L2(R)

⟨· − |η|⟩1/2ṽ(·, η)

L2(R).

Since

1

2
− s+ λ(s) + s ≥ 1

2
,

1

2
− s+ λ(s) > 0,

and Lemma 1.3.11, ∫
R
⟨·⟩s−1/2I1(·, η) dη


L2(R)

≲ ∥u∥
X

λ(s),1/2−ρ
−

∥v∥
X

s,1/2
−

.

Similarly, for j = 2, 3,⟨ξ⟩s ∫∫
R2

⟨τ + |ξ|⟩−1/2χAj
(τ, ξ, σ, η) ũ(τ − σ, ξ − η) ṽ(σ, η) dσdη


L2(Rτ×Rξ)

≲

∫
R
⟨·⟩s−1/2Ij(·, η) dη


L2(R)

,

where

I2(ξ, η) =

⟨·+ |ξ|⟩−1/2

∫
R
⟨· − σ − |ξ − η|⟩1/2

⏐⏐⏐ũ(· − σ, ξ − η) ṽ(σ, η)
⏐⏐⏐ dσ

L2(R)
,

I3(ξ, η) =

⟨·+ |ξ|⟩−1/2

∫
R
⟨σ − |η|⟩1/2

⏐⏐⏐ũ(· − σ, ξ − η) ṽ(σ, η)
⏐⏐⏐ dσ

L2(R)
.
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By Lemma 2.2.7,

I2(ξ, η) ≲ ∥⟨· − |ξ − η|⟩1/2ũ(·, ξ − η)∥L2(R)∥⟨· − |η|⟩1/2−ρṽ(·, η)∥L2(R),

I3(ξ, η) ≲ ∥⟨· − |ξ − η|⟩1/2−ρũ(·, ξ − η)∥L2(R)∥⟨· − |η|⟩1/2ṽ(·, η)∥L2(R).

Then, for j = 2, 3, by Lemma 1.3.11∫
R
⟨·⟩s−1/2Ij(·, η)dη


L2(R)

≲ ∥u∥
X

λ(s),1/2
−

∥v∥
X

s,1/2−ρ
−

+ ∥u∥
X

λ(s),1/2−ρ
−

∥v∥
X

s,1/2
−

.

(b) X norm estimate with s = 0.
By Lemmas 1.3.11 and 2.2.7,

∥uv∥
X

0,−1/2
+

≲
3∑

j=1

∫
R
⟨·⟩−1/4⟨η⟩−1/4Ij(·, η) dη


L2(R)

≲ ∥u∥
X

0,1/2
−

∥v∥
X

0,1/2−ρ
−

+ ∥u∥
X

0,1/2−ρ
−

∥v∥
X

0,1/2
−

,

where I1, I2, and I3 are defined as in the case (a).

(c) Y norm estimate with s > 0.
By the Minkowski inequality,⟨ξ⟩s ∫∫

R2

⟨τ + |ξ|⟩−1χA1
(τ, ξ, σ, η)ũ(τ − σ, ξ − η)ṽ(σ, η) dσdη


L2(Rξ;L1(Rτ ))

≲

∫
R
⟨·⟩s−1/2J1(·, η) dη


L2(R)

,

where

J1(ξ, η) =

⟨·+ |ξ|⟩−1/2

∫
R
|ũ(· − σ, ξ − η)ṽ(σ, η)| dσ


L1(R)

.

By Lemma 2.2.7,

J1(ξ, η) ≲ ∥⟨· − |ξ − η|⟩1/2−ρũ(·, ξ − η)∥L2(R)∥⟨· − |η|⟩1/2ṽ(·, η)∥L2(R).

Then, we obtain ∫ ⟨·⟩s−1/2J1(·, η) dη

L2(R)

≲ ∥u∥
X

λ(s),1/2−ρ
−

∥v∥
X

s,1/2
−

by Lemma 1.3.11. Similarly, for j = 2, 3,∫∫
R2

⟨τ + |ξ|⟩−1χAj (τ, ξ, σ, η)ũ(τ − σ, ξ − η)ṽ(σ, η) dσdη


L2(Rξ;L1(Rτ ))

≲

 ∫
R
⟨·⟩s−1/2Jj(·, η) dη


L2(R)

,
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where

J2(ξ, η) =

⟨·+ |ξ|⟩−1

∫
R
⟨· − σ − |ξ − η|⟩1/2

⏐⏐ũ(· − σ, ξ − η)ṽ(σ, η)
⏐⏐ dσ

L1(R)
,

J3(ξ, η) =

⟨·+ |ξ|⟩−1

∫
R
⟨σ − |η|⟩1/2

⏐⏐ũ(· − σ, ξ − η)ṽ(σ, η)
⏐⏐ dσ

L1(R)
.

By Lemma 2.2.7,

J2(ξ, η) ≲ ∥⟨· − |ξ − η|⟩1/2ũ(·, ξ − η)∥L2(R)∥⟨· − |η|⟩1/2−ρṽ(·, η)∥L2(R),

J3(ξ, η) ≲ ∥⟨· − |ξ − η|⟩1/2−ρũ(·, ξ − η)∥L2(R)∥⟨· − |η|⟩1/2ṽ(·, η)∥L2(R).

Then, ∫
R
⟨·⟩s−1/2Jj(·, η) dη


L2(R)

≲ ∥u∥
X

λ(s),1/2
−

∥v∥
X

s,1/2−ρ
−

+ ∥u∥
X

λ(s),1/2−ρ
−

∥v∥
X

s,1/2
−

follows from Lemma 1.3.11.

(d) Y norm estimate with s = 0.
By Lemmas 1.3.11 and 2.2.7,

uv : Y 0
+


≲

3∑
j=1

∫
R
⟨·⟩−1/4⟨η⟩−1/4Jj(·, η) dη


L2(R)

≲ ∥u∥
X

0,1/2
−

∥v∥
X

0,1/2−ρ
−

+ ∥u∥
X

0,1/2−ρ
−

∥v∥
X

0,1/2
−

,

where J1, J2, and J3 are defined as in the case (c).

Q.E.D.

Remark 2.2.3. Proposition 2.2.2 is almost optimal. See Proposition 2.3.3 and Corollary 2.3.1.

Remark 2.2.4. The trick of exchanging smoothness is not applicable to the bilinear estimates Xs,b−1
+ ↪→

Xs,b
+ Xs,b

± and Xs,b−1
− ↪→ Xs,b

− Xs,b
± which one needs to use Fourier restriction method for (2.2.4) and

(2.2.5). In addition, the bilinear estimates Xs,b−1
+ ↪→ Xs,b

+ Xs,b
± and Xs,b−1

− ↪→ Xs,b
− Xs,b

± fail for s ≤ 1/2

and any b ∈ R. For any s ≤ 1/2 and b ∈ R, let ũ± = ⟨τ ± ξ⟩−b−1⟨ξ⟩−s−1/2 log⟨ξ⟩−3/4. Then, u± ∈ Xs,b
±

and

∥u+u±∥Xs,b
+

= ∥u−u±∥Xs,b
−

= ∞.



28 Chapter 2. (SR) with Quadratic Nonlinearity

These estimates are calculated as follows:

∥u+u+∥Xs,b
+

=

⟨ξ⟩s⟨τ + |ξ|⟩b−1

∫∫
R2

⟨τ − σ + |ξ − η|⟩−1⟨σ + |η|⟩−1⟨ξ − η⟩−s−1/2 log⟨ξ − η⟩−3/4

· ⟨η⟩−s−1/2 log⟨η⟩−3/4dσdη


L2(Rτ×Rξ)

≥
⟨ξ⟩s⟨τ + ξ⟩b−1

∫ ξ

0

∫ −η+1

−η−1

⟨τ − σ + ξ − η⟩−1⟨σ + η⟩−1⟨ξ − η⟩−s−1/2⟨η⟩−s−1/2

· log⟨ξ − η⟩−3/4 log⟨η⟩−3/4dσdη


L2({(τ,ξ)|ξ≥2, −1≤τ+ξ≤+1)}

≳

⟨·⟩−1/2 log⟨·⟩−3/4

∫ ·

0

⟨η⟩−1 log⟨η⟩−3/4dη


L2(2,∞)

≳ ∥⟨·⟩−1/2 log⟨·⟩−1/2∥L2(2,∞) = ∞

and

∥u+u−∥Xs,b
+

=

⟨ξ⟩s⟨τ + |ξ|⟩b−1

∫∫
R2

⟨τ − σ + |ξ − η|⟩−1⟨σ − |η|⟩−1⟨ξ − η⟩−s−1/2⟨η⟩−s−1/2

· log⟨ξ − η⟩−3/4 log⟨η⟩−3/4dσdη


L2(Rτ×Rξ)

≥
⟨ξ⟩s⟨τ + ξ⟩b−1

∫ 0

−ξ

∫ η+1

η−1

⟨τ − σ + ξ − η⟩−1⟨σ + η⟩−1⟨ξ − η⟩−s−1/2⟨η⟩−s−1/2

· log⟨ξ − η⟩−3/4 log⟨η⟩−3/4dσdη


L2({(τ,ξ)|ξ≥2, −1≤τ+ξ≤1})

≳

⟨·⟩−1/2 log⟨·⟩−3/4

∫ ·

0

⟨η⟩−1 log⟨η⟩−3/4dη


L2(2,∞)

= ∞,

and the remainders are estimated similarly.

Corollary 2.2.1. Let s ≥ 0, 0 ≤ ρ < 1/2 and let T > 0. Then,

∥uv∥
X

s,−1/2
± ∩Y s

±
≲ T ρ∥u∥

X
λ(s),1/2
∓

∥v∥
X

s,1/2
∓

(2.2.8)

for any u ∈ X
λ(s),1/2
∓ and v ∈ X

s,1/2
∓ such that supp u, supp v ⊂ [−T, T ]× R.

proof. By Proposition 2.2.2 and Lemma 2.2.6, we obtain (2.2.8). Q.E.D.

2.3 Proof of Theorem 2.1.1

We separate the proof for the existence and for the persistence of regularity.
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2.3.1 Proof of Existence of Solutions

Let s ≥ 0, u0 ∈ Hs and let 0 < T ≤ 1. We define a solution map Φ± as

Φ±(u)(t) = U(±t)u0 − iλ

∫ t

0

U(±(t− t′)) u(t′)
2
dt′, (2.3.1)

where double-sign corresponds (2.1.1). We also define a metric space

Bs
±(R, [0, T ]) = {u ∈ X

s,1/2
± [0, T ] | ∥u∥

X
s,1/2
± [0,T ]

≤ R}

with metric

ds±(u1, u2) = ∥u1 − u2∥Xs,1/2
± [0,T ]

.

We see (Bs
±(R, [0, T ]), d

s
±) is a complete metric space for any s ≥ 0. We prove that Φ± is a contraction

map on Bs
∓(R, [0, T ]) for sufficiently large R and sufficiently small T .

Let u ∈ Bs
∓(R, [0, T ]) and let u′ ∈ X

s,1/2
∓ satisfy

u′ = u on [0, T ]× R, supp u′ ⊂ [−2T, 2T ]× R.

Then, Φ±(u) is defined on [0, T ]× R. Moreover,

ψT (t)

∫ t

0

U(±(t− t′)) u′(t′)
2
dt′ =

∫ t

0

U(±(t− t′)) u(t′)
2
dt′

on [0, T ]× R and their supports are contained in [−2T, 2T ]× R. Then,

∥Φ±(u)∥Xs,1/2
∓ [0,T ]

≤ ∥U(±t)u0∥Xs,1/2
∓ [0,T ]

+

λ ∫ t

0

U(±(t− t′)) u(t′)
2
dt′

X

s,1/2
− [0,T ]

.

By Lemma 2.2.4,
∥U(±t) u0∥Xs,1/2

∓ [0,T ]
≤ ∥ψT (t)U(±t) u0∥Xs,1/2

mp
≲ ∥u0∥Hs .

By Lemma 2.2.2, Proposition 2.2.1, and Corollary 2.2.1,∫ t

0

U(±(t− t′)) u(t′)
2
dt′

X

s,1/2
∓ [0,T ]

≤ inf
u′

ψT (t)

∫ t

0

U(±(t− t′))u′(t′)
2
dt′

X

s,1/2
∓

≲ inf
u′

∥u′2∥
X

s,−1/2
∓ ∩Y s

∓

≲ inf
u′
T ρ∥u′∥2

X
s,1/2
±

= T ρ∥u∥
X

s,1/2
∓ [0,T ]

≤ T ρR2

for 0 < ρ < 1/2. This implies that Φ± is a map from Bs
∓(R, [0, T ]) into itself for some R and T .

Moreover, let u1, u2 ∈ Bs
∓(R, [0, T ]) and let u′1, u

′
2 ∈ Xs

∓ satisfy

u′j = uj on [0, T ]× R, supp u′j ⊂ [−2T, 2T ]× R.
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We have, by Lemma 2.2.2,

∥Φ±(u1)− Φ±(u2)∥Xs,1/2
∓ [0,T ]

≲ inf
u′
1,u

′
2

{
∥ (u′1 − u′2)u

′
1 ∥

X
s,−1/2
∓ ∩Y s

∓
+ ∥ u′2(u′1 − u′2) ∥Xs,−1/2

− ∩Y s
−

}
≤ T ρ inf

u′
1−u′

2,u
′
1

∥u′1∥Xs,1/2
±

∥u′1 − u′2∥Xs,1/2
±

+ T ρ inf
u′
2,u

′
1−u′

2

∥u′2∥Xs,1/2
±

∥u′1 − u′2∥Xs,1/2
±

≲ T ρR∥u1 − u2∥Xs,1/2
∓ [0,T ]

.

Therefore, Φ± is a contraction map on Bs
∓(R, [0, T ]) with sufficiently small T and this means we have

a unique local solution u ∈ X
s,1/2
∓ [0, T ] to (2.3.1) in Hs(R) setting with s ≥ 0.

2.3.2 Proof of Persistence Regularity

Let s ≥ 0 and let u0 ∈ Hs(R). By the proof of Subsection 2.3.1, we have the maximal existence time
T (s′) > 0 for 0 ≤ s′ ≤ s such that there is a unique local solution u ∈ C([0, T (s′)), Hs′(R)). Since
s ≥ λ(s), we have T (s) ≤ T (λ(s)), where λ(s) is as in (2.2.3). We show that if T (s) < T (λ(s)), then

sup
t∈[0,T (s))

∥u(t)∥Hs(R) <∞, (2.3.2)

namely, T (s) = T (λ(s)) from the point of view of blow-up alternative argument. Let T1 = min(1, T (λ(s))−T (s)
2 ).

For sufficiently large C, we define R1 > 0 as

R1 = 2C

(
1 + sup

t∈[0,T (s)+T1]

∥u(t)∥Hλ(s)(R)

)
<∞.

We have 0 < T2 < T1 such that for any 0 < T0 < T (s) and any 0 < T < T2, Φ± is a contraction map

on B
λ(s)
∓ (R1, [T0, T0 +T ]). Let 0 < ρ < 1/2, and let u1, u2 ∈ B

λ(s)
∓ (R1, [T0, T0 +T ]). Let u′1, u

′
2 ∈ X

s,1/2
∓

and u′′1 , u
′′
2 ∈ X

λ(s),1/2
∓ satisfy

u′j = uj on [T0, T0 + T ]× R, supp u′j ⊂ [T0 − 2T, T0 + 2T ]× R,

u′′j = uj on [T0, T0 + T ]× R, supp u′′j ⊂ [T0 − 2T, T0 + 2T ]× R

for j = 1, 2. Then, by Proposition 2.2.2,

∥Φ±(u1)∥Xs,1/2
∓ [T0, T0+T ]

≤ ∥U(±t)u(T0)∥Xs,1/2
∓ [T0, T0+T ]

+

λ ∫ t

T0

U(±(t− t′))u1(t′)
2
dt′

X

s,1/2
∓ [T0, T0+T ]

≤ C∥u(T0)∥Hs(R) + CT ρ inf
u′
1,u

′′
1

∥u′′1∥Xλ(s),1/2
∓

∥u′1∥Xs,1/2
∓

≤ C∥u(T0)∥Hs(R) + CT ρR1∥u1∥Xs,1/2
∓ [T0,T0+T ]

.

Let
R2(T0) = 2C(1 + ∥u(T0)∥Hs(R))
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and let
T3 = min(T2, (8CR1)

−1/ρ, T (s)− T0).

Then, for 0 < T < T3, Φ is a map on

B
λ(s)
∓ (R1, [T0, T0 + T ]) ∩Bs

∓(R2(T0), [T0, T0 + T ]).

In addition,

∥Φ±(u1)− Φ±(u2)∥Xs,1/2
∓ [T0, T0+T ]

≤
λ ∫ t

T0

U(±(t− t′))(u′′1(t
′) + u′′2(t

′))(u′1(t
′)− u′2(t

′))


X

s,1/2
∓ [T0, T0+T ]

≤ CT ρ inf
u′′
1 ,u

′
1−u′

2

∥u′′1∥Xλ(s),1/2
∓

∥u′1 − u′2∥Xs,1/2
∓

+ CT ρ inf
u′′
2 ,u

′
1−u′

2

∥u′′2∥Xλ(s),1/2
∓

∥u′1 − u′2∥Xs,1/2
∓

≤ 1

4
∥u1 − u2∥Xs,1/2

∓ [T0, T0+T ]
.

Therefore, Φ± is a contraction map and u is guaranteed in both X
λ(s),1/2
∓ [T0, T0+T ] and X

s,1/2
∓ [T0, T0+

T ]. If T (s)− T0 < min(T2, (8CR1)
−1/ρ), then T3 = T (s)− T0 and

sup
T∈[0,T (s)−T0)

∥u∥
X

s,1/2
∓ [T0, T0+T ]

≤ R2(T0),

which together with Proposition 2.2.2 implies

sup
T∈[0,T (s)−T0)

∥u2∥Y s
∓[T0, T0+T ] ≤ CR2(T0)

2.

Then, by lemma 2.2.5,
sup

t∈[T0,T (s))

∥u(t)∥Hs(R) ≤ C2R2(T0)
2.

Thus, we obtain (2.3.2) and T (s) = T (λ(s)) = T (0).

2.3.3 Proof of Local Well-Posedness without Y Norm

In this subsection, we clarify why the auxiliary space Y is important in our argument. We give an
alternative proof of the existence of solutions for s > 0, without using the auxiliary norm Y . On the
other hand, we shall explain why we need the norm Y at least in our argument if s = 0. It is important
that δ(s) in the proof below is strictly positive. We exchange it into the positive power of T . Then, the
contraction argument is completed when T is sufficiently small.

The following estimate is used to give a simple proof of Theorem 2.1.1 with s > 0.

Proposition 2.3.1. Let ε > 0, ρ ≥ 0, b, δ ∈ R satisfy

1 + b− δ >
1

2
+ ε+ ρ,

b+ δ + ε, ρ+ δ + ε ≤ 1,

b− ε, b− ρ ≥ 0,

s+ ε ≥ 1/2.
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Then,

∥uv∥Xs,b−1+δ
±

≲ ∥u∥Xs,b
∓

∥v∥Xs,b−ρ
∓

+ ∥u∥Xs,b−ρ
∓

∥v∥Xs,b
∓

(2.3.3)

for any u, v ∈ Xs,b
∓ .

proof. We use the same notation as in the proof of Proposition 2.2.2. We show only

∥uv∥Xs,b−1+δ
+

≲ ∥u∥Xs,b
−

∥v∥Xs,b−ρ
−

+ ∥u∥Xs,b−ρ
−

∥v∥Xs,b
−

Since |ξ|, |ξ − η|, |η| ≤ 3M(τ, ξ, σ, η) and Lemma 2.2.7,⟨ξ⟩s ∫∫
R2

⟨τ + |ξ|⟩b−1+δχA1
(τ, ξ, η, σ) ũ(τ − σ, ξ − η) ṽ(σ, η) dσdη


L2(Rτ×Rξ)

≲

∫ ⟨·⟩s−ε/3⟨· − η⟩−ε/3⟨η⟩−ε/3K1(ξ, η) dη


L2(R)

,

where

K1(ξ, η) =

⟨·+ |ξ|⟩b−1+δ+ε

∫
R
|ũ(· − σ, ξ − η)ṽ(σ, η)| dσ


L2(R)

.

By Lemma 2.2.7,

K1(ξ, η) ≲ ∥⟨· − |ξ − η|⟩b−ρũ(·, ξ − η)∥L2(R)∥⟨· − |η|⟩bṽ(·, η)∥L2(R).

Similarly, for j = 2, 3,⟨ξ⟩s ∫∫
R2

⟨τ + |ξ|⟩b−1+δχAj
(τ, ξ, η, σ) ũ(τ − σ, ξ − η) ṽ(σ, η) dσdη


L2(Rτ×Rξ)

≲ ∥
∫
⟨·⟩s−ε/3⟨· − η⟩−ε/3⟨η⟩−ε/3Kj(ξ, η) dη∥L2(R),

where

K2 =

⟨·+ |ξ|⟩b−1+δ

∫
R
⟨· − |ξ − η|⟩ε|ũ(· − σ, ξ − η) ṽ(σ, η)| dσ


L2(R)

,

K3 =

⟨·+ |ξ|⟩b−1+δ

∫
R
|ũ(· − σ, ξ − η)⟨· − |η|⟩εṽ(σ, η)| dσ


L2(R)

.

By Lemma 2.2.7,

K2(ξ, η) ≲ ∥⟨· − |ξ − η|⟩bũ(·, ξ − η)∥L2(R)∥⟨· − |η|⟩b−ρṽ(·, η)∥L2(R),

K3(ξ, η) ≲ ∥⟨· − |ξ − η|⟩b−ρũ(·, ξ − η)∥L2(R)∥⟨· − |η|⟩bṽ(·, η)∥L2(R).

Then, we obtain (2.3.3) by Lemma 1.3.11. Q.E.D.

Remark 2.3.2. b = 1/2 , δ = 0 , ε = 1/2 are the only numbers that ensures (2.3.3) for s = 0. See
Proposition 2.3.3.
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A simple proof of existence of solution for s > 0. Let s > 0, u0 ∈ Hs and let 0 < T ≤ 1. We take
b(s) = min(3/4, (1 + s)/2) > 1/2 and δ(s) = min(1/4, s/2) > 0 for Proposition 2.3.1.

We define a metric space

B′s
∓(R, T ) = {u ∈ X

′s,b(s)
∓ [0, T ] ; ∥u∥

X
′s,b(s)
∓ [0,T ]

≤ R}

with metric
d′∓(u1, u2) = ∥u1 − u2∥X′s,b(s)

∓ [0,T ]
.

We see (B′s
∓(R, T ), d

′
∓) is a complete metric space. We prove that Φ± defined as (2.3.1) is a contraction

map on B′s
∓(R, T ) for sufficiently large R and sufficiently small T .

Let u ∈ B′s
∓(R, T ) and let u′ ∈ X

s,b(s)
∓ satisfy

u′ = u on [0, T ]× R.

We have

∥Φ±(u)∥X′s,b(s)
∓ [0,T ]

≤ ∥U(±t) u0∥X′s,b(s)
∓ [0,T ]

+

λ ∫ t

0

U(±(t− t′)) u(t′)
2
dt′

X

′s,b(s)
∓ [0,T ]

.

By Lemma 2.2.4,
∥U(±t) u0∥X′s,b

∓ [0,T ] ≤ ∥ψ(t)U(±t) u0∥X′s,b
∓

≲ ∥u0∥Hs(R).

By Propositions 2.2.1 and 2.3.1, we obtain∫ t

0

U(±(t− t′))u(t′)
2
dt′

X

′s,b(s)
∓ [0,T ]

≤ inf
u′

ψT (t)

∫ t

0

U(±(t− t′))u′(t′)
2
dt′

X

s,b(s)
∓

≲ inf
u′
T δ(s)∥u′2∥

X
s,b(s)−1+δ(s)
∓

≲ inf
u′
T δ(s)∥u′∥2

X
s,b(s)
∓

≲ T δ(s)∥u∥
X

s,b(s)
∓ [0,T ]

≤ T δ(s)R2.

Thus, Φ± is a map from B′s
∓(R, T ) to B′s

∓(R, T ) for some R and T . Moreover, let u1, u2 ∈ B′s
∓(R, T )

and let u′1, u
′
2 ∈ X

s,b(s)
∓ satisfy

u′j = uj on [0, T ]× R
for j = 1, 2. Then, we have

∥Φ∓(u1)− Φ∓(u2)∥X′s,b(s)
∓ [0,T ]

≲ inf
u′
1,u

′
2

T δ(s)∥(u′1 + u′2)(u
′
1 − u′2)∥Xs,b(s)−1+δ(s)

−

≲ T δ(s) inf
u′
1,u

′
1−u′

2

∥u′1∥Xs,b(s)
∓

∥u′1 − u′2∥Xs,b(s)
∓

+ T δ(s) inf
u′
2,u

′
1−u′

2

∥u′2∥Xs,b(s)
∓

∥u′1 − u′2∥Xs,b(s)
∓

≲ T δ(s)R∥u1 − u2∥X′s,b(s)
∓ [0,T ]

.
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Thus, Φ± is a contraction map on B′s
∓(R, T ) for sufficiently small T . Q.E.D.

The following proposition implies that we can not take δ > 0 when s = 0 in the above proof.

Proposition 2.3.3. For any b ∈ [0, 1/2) ∪ (1/2, 1], there exists a pair (u, v) ∈ X0,b
− ×X0,b

− such that

∥uv∥X0,b−1
+

= ∞. (2.3.4)

Also for any δ > 0, there exists a pair (u, v) ∈ X
0,1/2
− ×X

0,1/2
− such that

∥uv∥
X

0,−1/2+δ
+

= ∞. (2.3.5)

Remark 2.3.4. This is the reason why we use not only the norm Xs,b
± but also the norm Y s

±, since
Proposition 2.2.1 requires Y s

± norm when b = 1/2. Moreover, support restricted functions is necessary
to estimate Duhamel term by time in order to apply contraction argument to Cauchy problem (2.1.1),
since Proposition 2.2.1 doesn’t give such an estimate when b = 1/2.

Proof of Proposition 2.3.3. Suppose 1/2 < b ≤ 1. Let 0 < 2ε ≤ b− 1/2 and let

ũ1(τ, ξ) = ṽ1(τ, ξ) = ⟨ξ⟩− 1
2−ε⟨τ − |ξ|⟩−b−1/2−ε.

If τ > 2, τ − 1 < ξ < τ + 1, then

⟨τ + |ξ|⟩b−1

∫∫
R2

⟨η⟩− 1
2−ε⟨ξ − η⟩−1/2−ε⟨σ − |η|⟩−b−1/2−ε⟨τ − σ − |ξ − η|⟩−b−1/2−εdσdη

≳ ⟨2τ + 1⟩b−1

∫ ξ

0

⟨η⟩− 1
2−ε⟨ξ − η⟩− 1

2−ε⟨τ − |ξ − η| − |η|⟩−2b−2εdη

≳ ⟨2τ + 1⟩b−1

∫ ξ

0

(1 + ξ + η(ξ − η))−1/2−εdη

≳ ⟨2τ + 1⟩b−1

∫ ξ

0

⟨ξ⟩−1−2εdη

≳ ⟨τ + 1⟩−1/2.

This implies u1v1 ̸∈ X0,b−1
+ . Moreover, suppose 0 ≤ b < 1/2. Let b and δ satisfy 0 < 2ε ≤ 1/2− b and

let

ũ2(τ, ξ) = ⟨ξ⟩− 1
2−ε⟨τ − |ξ|⟩−b−1/2−ε,

ṽ2(τ, ξ) = ⟨ξ⟩− 1
2−ε⟨τ − |ξ|⟩−b⟨τ + |ξ|⟩−1/2−ε.

Since for any real number a and b, ⟨a+ b⟩ ≤ ⟨a⟩⟨b⟩, for ξ > 0,

⟨τ + |ξ|⟩b−1

∫∫
R2

⟨η⟩− 1
2−ε⟨ξ − η⟩−1/2−ε⟨σ − |η|⟩−b−1/2−ε

· ⟨τ − σ − |ξ − η|⟩−b⟨τ − σ + |ξ − η|⟩−1/2−εdσdη

≳ ⟨τ + |ξ|⟩b−1

∫∫
R2

⟨η⟩− 1
2−ε⟨ξ − η⟩−b−1/2−ε⟨σ − |η|⟩−b−1/2−ε

· ⟨τ − σ + |ξ − η|⟩−b−1/2−εdσdη

≳ ⟨τ + ξ⟩b−1

∫ 0

−∞
⟨η⟩− 1

2−ε⟨ξ − η⟩−b− 1
2−ε⟨τ + ξ⟩−2b−2εdη

≳ ⟨τ + ξ⟩−b−1−2ε⟨ξ⟩−1/2 ̸∈ L2
ξ>0(L

2
τ ).
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Therefore, u2v2 ̸∈ X0,b−1
+ . We complete the proof of (2.3.4).

Suppose δ > 0 and b = 1/2. Let ε satisfy 0 < 2ε ≤ δ and let

ũ3(τ, ξ) = ṽ3(τ, ξ) = ⟨ξ⟩− 1
2−ε⟨τ − |ξ|⟩−1−ε.

If τ > 2, τ − 1 < ξ < τ + 1, then

⟨τ + |ξ|⟩−1/2+δ

∫∫
R2

⟨η⟩− 1
2−ε⟨ξ − η⟩−1/2−ε⟨σ − |η|⟩−1−ε⟨τ − σ − |ξ − η|⟩−1−εdσdη

≳ ⟨2τ + 1⟩−1/2+δ

∫ ξ

0

⟨η⟩− 1
2−ε⟨ξ − η⟩− 1

2−ε⟨τ − |ξ − η| − |η|⟩−1−2εdη

≳ ⟨2τ + 1⟩−1/2+δ

∫ ξ

0

(1 + ξ + η(ξ − η))−1/2−εdη

≳ ⟨2τ + 1⟩−1/2+δ

∫ ξ

0

⟨ξ⟩−1−2εdη

≳ ⟨τ + 1⟩−1/2.

This yields u3v3 ̸∈ X0,b−1
+ and we obtain (2.3.5). Q.E.D.

Corollary 2.3.1. For any b ∈ R and s < 0, there exists a pair u, v ∈ Xs,b
− such that

∥uv∥Xs,b−1
+

= ∞. (2.3.6)

Remark 2.3.5. Proposition 2.3.3 and Corollary 2.3.1 show that Proposition 2.2.2 is almost optimal.

Proof of Corollary 2.3.1. Suppose 1/2 ≤ b ≤ 1. Let 0 < ε < −s and let

ũ1(τ, ξ) = ṽ1(τ, ξ) = ⟨ξ⟩− 1
2−ε⟨τ − |ξ|⟩−b−1/2−ε.

If τ > 2, τ − 1 < ξ < τ + 1, then

⟨ξ⟩s⟨τ + |ξ|⟩b−1

·
∫∫

R2

⟨η⟩−s− 1
2−ε⟨ξ − η⟩−s−1/2−ε⟨σ − |η|⟩−b−1/2−ε⟨τ − σ − |ξ − η|⟩−b−1/2−εdσdη

≳ ⟨ξ⟩s⟨2τ + 1⟩b−1

∫ ξ

0

⟨η⟩−s− 1
2−ε⟨ξ − η⟩−s− 1

2−ε⟨τ − |ξ − η| − |η|⟩−2b−2εdη

≳ ⟨ξ⟩s⟨2τ + 1⟩b−1

∫ ξ

0

(1 + ξ + η(ξ − η))−s−1/2−εdη

≳ ⟨2τ + 1⟩b−1

∫ ξ

0

⟨ξ⟩−2s−1−2εdη

≳ ⟨τ + 1⟩−1/2.

This implies u1v1 ̸∈ Xs,b−1
+ . Moreover, suppose 0 ≤ b < 1/2. Let b and δ satisfy 0 < 2ε ≤ 1/2− b and

let

ũ2(τ, ξ) = ⟨ξ⟩−s− 1
2−ε⟨τ − |ξ|⟩−b−1/2−ε,

ṽ2(τ, ξ) = ⟨ξ⟩−s− 1
2−ε⟨τ − |ξ|⟩−b⟨τ + |ξ|⟩−1/2−ε.
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Since for any real number a and b, ⟨a+ b⟩ ≤ ⟨a⟩⟨b⟩, for ξ > 0,

⟨ξ⟩s⟨τ + |ξ|⟩b−1

∫∫
R2

⟨η⟩−s− 1
2−ε⟨ξ − η⟩−s−1/2−ε⟨σ − |η|⟩−b−1/2−ε

· ⟨τ − σ − |ξ − η|⟩−b⟨τ − σ + |ξ − η|⟩−1/2−εdσdη

≳ ⟨τ + |ξ|⟩b−1

∫∫
R2

⟨η⟩− 1
2−ε⟨ξ − η⟩−b−1/2−ε⟨σ − |η|⟩−b−1/2−ε

· ⟨τ − σ + |ξ − η|⟩−b−1/2−εdσdη

≳ ⟨τ + ξ⟩b−1

∫ 0

−∞
⟨η⟩− 1

2−ε⟨ξ − η⟩−b− 1
2−ε⟨τ + ξ⟩−2b−2εdη

≳ ⟨τ + ξ⟩−b−1−2ε⟨ξ⟩−1/2 ̸∈ L2
ξ>0(L

2
τ ).

Therefore, u2v2 ̸∈ X0,b−1
+ . We complete the proof of (2.3.6). Q.E.D.

2.4 Proof of Theorem 2.1.2

In this section, we prove Theorem 2.1.2 by direct calculation. For simplicity, we show only (2.1.4) with
U(t). Let −1/2 < s < 0. Let u0 = F−1χξ>1⟨ξ⟩−1/2−s−ε.

F

[ ∫ t

0

U(t− t′)

(
U(t′)u0

∫ t′

0

U(t′′ − t′)(U(t′)u0)
2dt′′

)
dt′
]
(ξ)

= exp(it
√
m2 + ξ2)

∫ t

0

∫
R
exp(−it′g(ξ, η1))û0(−ξ + η1)Ĵ(t

′, η1)dη1dt
′,

where

g(ξ, η1) =
√
m2 + ξ2 +

√
m2 + (ξ − η1)2 +

√
m2 + η21 (2.4.1)

and

Ĵ(t, η1) =

∫ t

0

∫
R
exp(it′g(η1, η2))û0(η1 − η2)û0(η2)dη2dt

′.

Let (u0,n) be a sequence of S(R) such that û0,n is non-negative function and ϕ̂n(ξ) converges û0(ξ)
from below monotonically for any ξ. Let

Jn(t, η1) = −i
(
Jn,1(t, η1)− Jn,2(t, η1)

)
,

Ĵn,1(t, η1) =

∫
R

1

g(η1, η2)
û0,n(η1 − η2)û0,n(η2)dη2,

Ĵn,2(t, η1) =

∫
R

exp(itg(η1, η2))

g(η1, η2)
û0,n(η1 − η2)û0,n(η2)dη2.

Then, χ|·|≤1

∫ 1

−1

exp(itg(·, η2))
g(·, η2)

û0,n(· − η2)û0,n(η2)dη2


L2(R)

≲ ∥u0,n∥2Hs(R)
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and χ|·|≥1

∫
|η2|≥1

exp(itg(·, η2))
g(·, η2)

û0,n(· − η2)û0,n(η2)dη2


L2(R)

≲

⟨·⟩s ∫
R

1

1 + g(·, η2)
û0,n(ξ − η2)û0,n(η2)dη2


L2(R)

≲

⟨·⟩s ∫ ⟨· − η2⟩−1/2⟨η2⟩−1/2û0,n(· − η2)û0,n(η2)dη2


L2(R)

≲ ∥u0,n∥2Hs(R).

Therefore ∥J2(t, ·)∥Hs(R) ≲ ∥u0,n∥2Hs(R). Similarly,

⟨·⟩s ∫ t

0

∫
R
exp(−it′g(·, η1))û0,n(− ·+η1)Ĵn,1(t′, η1)dη1dt′


L2(R)

≤
⟨·⟩s ∫

R

2

g(·, η1)
û0,n(− ·+η1)Ĵn,1(t′, η1)dη1dt′


L2(R)

≲ ∥u0,n∥Hs(R)∥Jn,1∥Hs(R)

≲ ∥u0,n∥3Hs(R).

On the other hand, let

b(ξ, η1, η2)

= g(ξ, η1)− g(η1, η2)

=
√
m2 + ξ2 +

√
m2 + (ξ − η1)2 −

√
m2 + (η1 − η2)2 −

√
m2 + η22 .

Then, |b(ξ, η1, η2)| < 2m when ξ > 0, ξ − η1 < 0, η1 − η2 < 0, and η2 < 0. Indeed, if b(ξ, η1, η2) > 0,
then

|b(ξ, η1, η2)|

=
√
m2 + ξ2 +

√
m2 + (ξ − η1)2 −

√
m2 + (η1 − η2)2 −

√
m2 + η22

≤ (m+ |ξ|) + (m+ |ξ − η1|)− (|η1 − η2|)− (|η2|)
= 2m,

and if b(ξ, η1, η2) < 0, then

|b(ξ, η1, η2)|

= −
√
m2 + ξ2 −

√
m2 + (ξ − η1)2 +

√
m2 + (η1 − η2)2 +

√
m2 + η22

≤ −ξ| − |ξ − η1|+ (m+ |η1 − η2|) + (m+ |η2|)
= 2m.
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If ξ > 1 and t is sufficiently small, then Re exp(itb(ξ, η1, η2)) > 1/2 and

sup
n∈N

⟨·⟩sRe ∫ t

0

∫
R
exp(−it′g(·, η1))û0,n(− ·+η1)Ĵn,2(t′, η1)dη1dt′


L2(R)

= sup
n∈N

⟨·⟩sRe ∫ t

0

∫
R
exp(−it′b(·, η1, η2))û0,n(− ·+η1)

∫
1

g(η1, η2)
û0,n(η1 − η2)û0,n(η2)dη2dη1dt

′

L2(R)

≳ sup
n∈N

⟨·⟩s ∫
R
û0,n(− ·+η1)⟨η1⟩−1

∫ η1

0

û0,n(η1 − η2)û0,n(η2)dη2dη1


L2(R)

≳

⟨·⟩s ∫ ∞

·
⟨· − η1⟩−s−1/2−ε⟨η1⟩−1

∫ η1

0

⟨η1 − η2⟩−s−1/2−ε⟨η2⟩−s−1/2−ε dη2dη1


L2(R)

≳

⟨·⟩s ∫ ∞

·
⟨· − η1⟩−s−1/2−ε⟨η1⟩−2s−1−2εdη1


L2(R)

≳

⟨·⟩s ∫ ∞

·
⟨η1⟩−3s−3/2−3εdη1


L2(R)

≳ ∥⟨·⟩−2s−1/2−3ε∥L2(R).

Since ε ≤ −2s/3, −2s− 1/2− 3ε ≥ −1/2,∫ t

0

U(t− t′)

(
U(t′)u0

∫ t′

0

U(t′′ − t′)(U(t′)u0)
2dt′′

)
dt′ ̸∈ Hs(R).

2.5 Proof of Theorem 2.1.3

In this section, we prove Theorem 2.1.3 by direct calculation. At first, we decompose the Duhamel term
with linear solution into 4 terms as follows:

F

[ ∫ t

0

U(±(t− t′))U(±t′)u0,k
2
dt′
]
(ξ) =

4∑
j=1

Ĵj(t, ξ),

where

Ĵ1(t, ξ) = k−2s

∫
R

exp(±itg(ξ, η))− 1

ig(ξ, η)
χ[−1,1](ξ − η + k)χ[−1,1](η + k)dηdt′,

Ĵ2(t, ξ) = k−2s

∫
R

exp(±itg(ξ, η))− 1

ig(ξ, η)
χ[−1,1](ξ − η + k)χ[−1,1](η − k)dηdt′,

Ĵ3(t, ξ) = k−2s

∫
R

exp(±itg(ξ, η))− 1

ig(ξ, η)
χ[−1,1](ξ − η − k)χ[−1,1](η + k)dηdt′,

Ĵ4(t, ξ) = k−2s

∫
R

exp(±itg(ξ, η))− 1

ig(ξ, η)
χ[−1,1](ξ − η − k)χ[−1,1](η − k)dηdt′

and g is defined in (2.4.1). If Ĵ1 ̸= 0, then ξ ∼ −2k, η, ξ−η ∼ −k, and therefore ∥J1(t, ·)∥Hs(R) ≲ k−s−1.

If Ĵ4 ̸= 0, then ξ ∼ 2k, η, ξ − η ∼ k, and therefore ∥J4(t, ·)∥Hs(R) ≲ k−s−1. Moreover, J2 = J3 and if

Ĵ2 ̸= 0, then ξ − η ∼ −k and η ∼ k, and therefore k ∼ 1 and ∥J2(t, ·)∥Hs(R) ≳ n−2s−1. This means∫ t

0

U(±(t− t′))U(±t′)u0,k
2
dt′
 ≳ k−2s−1 → ∞

as k → ∞.
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2.6 Proof of Theorem 2.1.4

In this section, we prove Theorem 2.1.4 by direct calculation.

2.6.1 (2.1.2) with −1/2 < s < 1/2

We estimate

F

[ ∫ t

0

U(±(t− t′))
(
U(±t′)u0U(±t′)u0

)
dt′
]
(ξ)

=

∫ t

0

∫
R
exp(−it′

(√
m2 + ξ2 +

√
m2 + (ξ − η)2 −

√
m2 + η2

)
)

· û0(η − ξ)û0(η) dηdt
′.

For preparation, we remind the estimate

−m ≤
√
m2 + ξ2 +

√
m2 + (η − ξ)2 −

√
m2 + η2 ≤ 2m

for 0 ≤ ξ ≤ η. Indeed, √
m2 + ξ2 +

√
m2 + (η − ξ)2 −

√
m2 + η2

≥ ξ + η − ξ −
√
m2 + η2

≥ ξ + η − ξ − η −m = −m

and √
m2 + ξ2 +

√
m2 + (η − ξ)2 −

√
m2 + η2

≤ 2m+ ξ + η − ξ −
√
m2 + η2

≤ 2m+ ξ + η − ξ − η = 2m.

Let û0 = χ[0,∞)⟨·⟩−s−1/2−ε, where ε > 0. We estimate the Duhamel term by duality with F−1[χ[0,∞)⟨·⟩s−1/2−ε] ∈
H−s(R). In particular, we estimate the following dual product:

Re

⟨
F−1[χ[0,∞)⟨·⟩−s−1/2−ε]

⏐⏐⏐⏐ ∫ t

0

U(±(t− t′))
(
U(±t′)u0U(±t′)u0

)
dt′
⟩

Hs(R)

= Re

∫ ∞

0

∫ t

0

∫ ∞

ξ

exp(−it′(
√
m2 + ξ2 +

√
m2 + (ξ − η)2 −

√
m2 + η2))dt′

· ⟨ξ⟩s−1/2−ε⟨ξ − η⟩−s−1/2−ε⟨η⟩−s−1/2−ε dη dξ.

For sufficiently small t and 0 ≤ ξ ≤ η,

Re
(
exp(−it′(

√
m2 + ξ2 +

√
m2 + (ξ − η)2 −

√
m2 + η2)

)
≥ 1/2.
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Then,

Re

⟨
F−1[χ[0,∞)⟨·⟩−s−1/2−ε]

⏐⏐⏐⏐ ∫ t

0

U(±(t− t′))
(
U(±t′)u0U(±t′)u0

)
dt′
⟩

Hs(R)

≥ t/2

∫ ∞

0

∫ ∞

ξ

⟨ξ⟩s−1/2−ε⟨ξ − η⟩−s−1/2−ε⟨η⟩−s−1/2−ε dη dξ

≥ t/2

∫ ∞

0

∫ ∞

ξ

⟨ξ⟩s−1/2−ε⟨η⟩−2s−1−ε dη dξ

≳ t

∫ ∞

0

⟨ξ⟩−s−1/2−3ε = ∞.

for ε ≤ 1/6− s/3.

2.6.2 (2.1.3) with −1/2 < s < 1/2

We estimate

F

[ ∫ t

0

U(±(t− t′))
(
U(±t′)u0

)2
dt′
]
(ξ)

=

∫ t

0

∫
R
exp(−it′

(√
m2 + ξ2 −

√
m2 + (ξ − η)2 −

√
m2 + η2

)
)û0(η)

2 dηdt′.

For preparation, we remind the estimate

−2m ≤
√
m2 + ξ2 −

√
m2 + (η − ξ)2 −

√
m2 + η2 ≤ m

for 0 ≤ η ≤ ξ. Indeed, √
m2 + ξ2 −

√
m2 + (ξ − η)2 −

√
m2 + η2

≥ ξ −
√
m2 + (ξ − η)2 −

√
m2 + η2

≥ ξ −m− ξ + η − η −m = −2m

and √
m2 + ξ2 −

√
m2 + (ξ − η)2 −

√
m2 + η2

≤ m+ ξ +
√
m2 + (ξ − η)2 −

√
m2 + η2

≤ m+ ξ − ξ + η − η = m.

Let û0 = χ[0,∞)⟨·⟩−s−1/2−ε, where ε > 0. We estimate the Duhamel term by duality with F−1[χ[0,∞)⟨·⟩s−1/2−ε] ∈
H−s(R) and a restriction of the interval of the integral;

Re

⟨
F−1[χξ>0⟨·⟩−s−1/2−ε]

⏐⏐⏐⏐ ∫ t

0

U(±(t− t′))
(
U(±t′)u0

)2
dt′
⟩

Hs(R)

= Re

∫ ∞

0

∫ t

0

∫ ξ

0

exp(−it′(
√
m2 + ξ2 +

√
m2 − (ξ − η)2 −

√
m2 + η2))dt′

· ⟨ξ⟩s−1/2−ε⟨ξ − η⟩−s−1/2−ε⟨η⟩−s−1/2−ε dη dξ.

For sufficiently small t and 0 ≤ ξ ≤ η,

Re
(
exp

(
− it′

(√
m2 + ξ2 −

√
m2 + (ξ − η)2 −

√
m2 + η2

)))
≥ 1/2.
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Then,

Re

⟨
F−1[χ⌈0,∞)]⟨·⟩−s−1/2−ε,

∫ t

0

U(±(t− t′))
(
U(±t′)u0

)2
dt′
⟩

≥ t/2

∫ ∞

0

∫ ∞

ξ

⟨ξ⟩s−1/2−ε⟨ξ − η⟩−s−1/2−ε⟨η⟩−s−1/2−ε dη dξ

≥ t/2

∫ ∞

1

∫ 2ξ

ξ

⟨ξ⟩−s−3/2−3εdη dξ

≳ t

∫ ∞

1

⟨ξ⟩−s−1/2−3ε = ∞.

for ε ≤ 1/6− s/3.
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Chapter 3

Construction of Solutions for (SR)
with a Priori Estimate

3.1 Introduction

In this chapter, we consider the Cauchy problems for the semirelativistic equation{
i∂tu± (m2 −∆)1/2u = λ|u|p−1u, t ∈ R, x ∈ R,
u(0) = u0, x ∈ R,

(3.1.1)

with m,∈ R and λ ∈ R, where ∂t = ∂/∂t and ∆ is the Laplacian in R.
Here, we restate our main result.

Theorem 3.1.1. Let p, λ ∈ R, and u0 satisfy one of the following:

• 1 < p ≤ 3 and λ ≤ 0,

• 1 < p < 3 and λ > 0,

• p = 3, λ > 0, and ∥u∥L2(R) ≪ 1.

Then for any u0 ∈ H1/2(R), there exists a global solution to (3.1.1). Moreover, let u0,n, u0 ∈ H1/2(R)
satisfy u0,n → u0 in H1/2(R) as n→ ∞, and let un and u be the solutions of (3.1.1) with data u0,n and
u0, respectively. Then un → u in L∞(−T, T ;H1/2(R)) for any T > 0 as n→ ∞.

We prove Theorem 3.1.1 by a simple argument based on Yosida type approximation operator. We
remark that Theorem 3.1.1 can be obtained by standard compactness argument. For details of the
standard compactness argument, we refer the reader to [62]. On the other hand, in this chapter, we
directly introduce a sequence of approximation solutions which converges the associated H1/2(R) valued
solution in L∞(−T, T ;H1/2(R)) for any T > 0.

We give a brief outline of this chapter. In Section 3.2, we collect some basic estimates for the proof
of Theorem 3.1.1. In Section 3.3, we give a proof of Theorem 3.1.1.

3.2 Preliminary for the Proof of Theorem 3.1.1

In this section, we collect some basic estimates for the proof of Theorem 3.1.1.
The following three estimates are basic for the proof of Theorem 3.1.1

43
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Lemma 3.2.1. Let X be a Banach space such that X ↪→ X∗, where X∗ is the dual of X. Let f, g ∈
C(R;X) ∩ C1(R;X∗). Then ⟨f, g⟩ ∈ C1(R;C) and

d

dt
⟨f(t), g(t)⟩ =

⟨
d

dt
f(t)

⏐⏐⏐⏐g(t)⟩
X

+

⟨
f(t)

⏐⏐⏐⏐ ddtg(t)
⟩

X

,

where ⟨· | ·⟩X is the dual product for X and X∗.

Lemma 3.2.2 ([77]). Let 2 ≤ p <∞. There exists C > 0 such that for any ψ ∈ H1/2(R),

∥ψ∥Lp(R) ≤ C
√
p∥ψ∥H1/2(R).

Lemma 3.2.3 (Lemma 2.4). Let r > 1 and a, b, T > 0. Let f : [0, T ] → [0,∞) satisfy

f(t) ≤ a+ b

∫ t

0

f1−1/r(t′)dt′

for all 0 ≤ t ≤ T . Then, f(t) ≤ (a1/r + br−1t)r for all 0 ≤ t ≤ T .

We consider the following integral equation associated with (3.1.1) and corresponding approximation
equation:

u(t) = U(±t)u0 − iλ

∫ t

0

U(±(t− t′)|u(t′)|p−1u(t′)dt′, (3.2.1)

uρ(t) = U(±t)Jρu0 − iλ

∫ t

0

U(±(t− t′))Jρ
(
|Jρuρ(t′)|p−1Jρuρ(t

′)
)
dt′, (3.2.1)ρ

where Jρ is approximation operator of Yosida type defined by Jρ = F−1ρ2(ρ2 + ξ2)−1F.
It is easily seen that (3.2.1) and (3.2.1)ρ has time-local solution in the H1(R) setting. If u ∈

C([0, T ];H1(R)) is a solution for (3.2.1), then u ∈ C1([0, T ];L2(R)), since by the Sobolev embedding,

∥|u|p−1u∥L2(R) ≤ ∥u∥p−1
L∞(R)∥u∥L2(R) ≲ ∥u∥pH1(R).

and therefore, the Duhamel term of (3.2.1) is differentiable as L2(R) valued function. It is easily seen
that H1(R) valued solutions for (3.2.1)ρ are also differentiable as L2(R) valued function. Then we have
the following time-local well-posedness in H1/2(R) setting:

Lemma 3.2.4. There exists a unique time-local solution to (3.2.1)ρ in C([0, T );H1(R)) for any ρ > 0
and H1/2(R) initial data.

proof. For any s ∈ R and ρ ≥ 1

∥Jρf∥Hs(R) =

 ρ2

ρ2 + ·2
⟨·⟩sf̂


L2(R)

≤ max(ρ, 1)2∥⟨·⟩s−2f̂


L2(R)

≤ max(ρ, 1)2∥f∥Hs−2(R).

Therefore, The fact that solution map

Φ±(u) = U(±t)Jρu0 − iλ

∫ t

0

U(±(t− t′))Jρ
(
|Jρuρ(t′)|p−1Jρuρ(t

′)
)
dt′

is a contraction map in C([0, T ];H1(R)) follows from Lemma 1.3.14. Q.E.D.
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Moreover, we have the following conservation laws.

Proposition 3.2.1. Let u0 ∈ H1/2(R). Let u ∈ C(R;H1/2(R)) ∩C1(R;H−1/2(R)) be a solution to the
integral equation (3.2.1) for the initial data u0. Then, ∥u(t)∥L2(R) = ∥u0∥L2(R) for any t.

Let ρ > 0. Let uρ ∈ C(R;H1/2(R))∩C1(R;H−1/2(R)) be a solution to the integral equation (3.2.1)ρ
for the initial data Jρu0. Then, ∥uρ(t)∥L2(R) = ∥Jρu0∥L2(R) for any t.

proof. The following formal calculations are justified by extending L2(R) scalar product to H−1/2(R)-
H1/2(R) duality:

d

dt
∥u(t)∥2L2(R) = 2Re⟨∂tu(t) | u(t)⟩H1/2(R) = 2Im⟨i∂tu(t) | u(t)⟩H1/2(R)

= 2Im⟨∓(m2 −∆)1/2 u(t) + λ|u(t)|p−1u(t) | u(t)⟩H1/2(R)

= 2Im∥u(t)∥Lp+1(R) = 0,

d

dt
∥uρ(t)∥2L2(R) = 2Re⟨∂tuρ(t) | uρ(t)⟩H1/2(R) = 2Im⟨i∂tuρ(t) | uρ(t)⟩H1/2(R)

= 2Im⟨∓(m2 −∆)1/2 uρ(t) + λJρ|Jρu(t)|p−1Jρu(t) | Jρu(t)⟩H1/2(R)

= 2Im∥Jρu(t)∥Lp+1(R) = 0,

where we used the following identity:

((m2 −∆)1/2f | f) = ((m2 + ·2)1/2f̂ | f̂) = ∥(m2 + ·)1/4f̂∥2L2(R).

Q.E.D.

Proposition 3.2.2. Let λ ∈ R and u0 ∈ H1/2(R). Let u ∈ C(R;H1(R)) ∩ C1(R;L2(R)) be a solution
to the integral equation (3.2.1) for the initial data u0. Then E(u(t)) = E(u0) for any t, where

E(f) = ∥(m2 −∆)1/4f∥2L2(R) −
λ

p+ 1
∥f∥p+1

Lp+1(R).

Let ρ > 0. Let uρ ∈ C(R;H1(R)) ∩ C1(R;L2(R)) be a solution to the integral equation (3.2.1)ρ for
the initial data Jρu0. Then, Eρ(uρ(t)) = Eρ(Jρu0) for any t, where

Eρ(f) = ∥(m2 −∆)1/4f∥2L2(R) −
λ

p+ 1
∥Jρf∥p+1

Lp+1(R).

proof. If u ∈ C(R;H1(R))∩C1(R;L2(R)), then the squared norms ∥(m2−∆)1/4u∥2L2(R) is differentiable
and we have

d

dt
∥(m2 −∆)

1
4u(t)∥2L2(R) = 2Re(∓i∂tu(t)± λ|u(t)|p−1u(t) | ±∂tu(t))

=
λ

p+ 1

d

dt
∥u(t)∥p+1

Lp+1(R),

d

dt
∥(m2 −∆)

1
4uρ(t)∥2L2(R) = 2Re(∓i∂tuρ(t)± λJρ|Jρuρ(t)|p−1Jρuρ(t) | ±∂tuρ(t))

=
λ

p+ 1

d

dt
∥Jρuρ(t)∥p+1

Lp+1(R).

Q.E.D.

Then, we have the following Ḣ1/2(R) boundedness of solutions to (3.2.1)ρ. Therefore, H1/2(R)
valued time-local solutions of (3.2.1)ρ are extended globally in time.
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Lemma 3.2.5. For any u0 ∈ H1/2(R) and T > 0, the associated solution uρ ∈ C([0, T );H1/2(R) to
(3.2.1)ρ satisfies that if 1 < p ≤ 3 and λ ≤ 0, then

∥uρ∥L∞(0,T ;Ḣ1/2(R)) ≤ Eρ(Jρu0),

if 1 < p < 3 and λ > 0, then

∥uρ∥2L∞(0,T ;Ḣ1/2(R)) ≤ 2Eρ(Jρu0) +

(
2λCg,p+1

p+ 1
∥u0∥2L2(R)

) 2
3−p

,

and if p = 3, λ > 0, and ∥u0∥L2(R) < 2λ−1/2C−2
g,4 , then

∥uρ∥2L∞(0,T ;Ḣ1/2(R)) ≤
Eρ(Jρu0)

1− λC4
g,4

4 ∥u0∥2L2(R)

,

where Cg,p is a best constant of the the Gagliardo-Nirenberg inequality

∥f∥Lp(R) ≤ Cg,p∥f(t)∥
2
p

L2(R)∥f(t)∥
p−2
p

Ḣ1/2(R).

proof. If λ < 0, then Propositions 3.2.2, for any t ∈ [0, T ),

∥uρ(t)∥Ḣ1/2(R) ≤ Eρ(uρ(t)) = Eρ(Jρu0).

If 1 < p < 3 and λ > 0, for any t ∈ [0, T ),

∥uρ(t)∥2Ḣ1/2(R) ≤ ∥(m2 −∆)1/2uρ(t)∥2L2(R)

≤ Eρ(uρ(t)) +
λ

p+ 1
∥Jρuρ(t)∥p+1

Lp+1(R)

≤ Eρ(Jρu0) +
λCp+1

g,p+1

p+ 1
∥u0∥2L2(R)∥uρ(t)∥

p−1

Ḣ1/2(R).

Therefore,

∥uρ∥2L∞(0,T ;Ḣ1/2(R)) ≤ 2Eρ(Jρu0) +

(
2λCp+1

g,p+1

p+ 1
∥u0∥2L2(R)

) 2
3−p

.

Moreover, if p = 3, λ > 0, and ∥u0∥L2(R) < 2λ−1/2C−2
g,4 , then

∥uρ∥2L∞(0,T ;Ḣ1/2(R)) ≤
Eρ(Jρu0)

1− λC4
g,4

4 ∥u0∥2L2(R)

.

Q.E.D.

By using the energy conservation, we also obtain the following continuity lemma.

Lemma 3.2.6. Let (fn)n∈N be a bounded sequence in L∞(R;H1/2(R)) which converges to f ∈ L∞(R, H1/2(R))
in L2(R) as n → ∞ locally uniformly. If (E(fn))n∈N converges to E(f) as n → ∞ locally uniformly,
then ∥f(t)− fn(t)∥H1/2(R) → 0 locally uniformly.

proof. Since H1/2(R) is a Hilbert space,

∥f(t)− fn(t)∥2H1/2(R) = 2Re((1−∆)1/4f(t) | (1−∆)1/4(f(t)− fn(t)))− ∥f(t)∥2H1/2(R) + ∥fn(t)∥2H1/2(R).

Since (fn)n∈N converges f in L2(R) as n→ ∞ locally uniformly, 2Re((1−∆)1/4f(t) | (1−∆)1/4(f(t)−
fn(t))) also goes to 0 locally uniformly. Moreover, since (E(fn))n∈N converges to E(f) as n→ ∞ locally
uniformly, (∥fn(·)∥H1/2(R))n∈N converges to ∥f(·)∥H1/2(R) as n→ ∞ locally uniformly, Q.E.D.
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3.3 Proof of Theorem 3.1.1

In this section, we divide the proof of Theorem 3.1.1 into two parts: proof of the existence of solutions
and proof of the continuity in time and the continuous dependence on initial data.

3.3.1 Proof of Existence of Solutions

Let u0 ∈ H1/2(R). By Lemma 3.2.5 and Proposition 3.2.1, there exists M =M(λ, p, u0) such that

sup
ρ>0

∥uρ∥L∞(R;H1/2(R)) ≤M.

For t ∈ R, we estimate

∥uρ(t)− uσ(t)∥L2(R)

≤ ∥(Jρ − Jσ)u0∥L2(R) + |λ|
∫ t

0

(1− Jρ)
(
|Jρuρ(t′)|p−1Jρuρ(t

′)
)

L2(R)dt
′

+ |λ|
∫ t

0

(1− Jσ)
(
|Jσuσ(t′)|p−1Jσuσ(t

′)
)

L2(R)dt
′

+ |λ|
∫ t

0

|Jρuρ(t′)|p−1Jρuρ(t
′)− |Jσuσ(t′)|p−1Jσuσ(t

′)

L2(R)dt

′. (3.3.1)

For sufficiently large r, by the Hölder, Gagliardo-Nirenberg inequalities, and Lemma 3.2.2,

∥|Jρuρ(t′)|p−1Jρuρ(t
′)− |Jσuσ(t′)|p−1Jσuσ(t

′)∥L2(R)

≤ C∥(|Jρuρ(t′)|p−1 + |Jσuσ(t′)|p−1)(Jρuρ(t
′)− Jσuσ(t

′))∥L2(R)

≤ C
(
∥Jρuρ(t′)∥p−1

L4(p−1)(R) + ∥Jσuσ(t′)∥p−1
L4(p−1)(R)

)
·
(
∥(1− Jρ)uρ(t

′)∥L4(R) + ∥(1− Jσ)uσ(t
′)∥L4(R)

)
+ C

(
∥Jρuρ(t′)∥p−1

L2r(p−1)(R) + ∥Jσuσ(t′)∥p−1
L2r(p−1)(R)

)
∥uρ(t′)− uσ(t

′)∥L2r′ (R)

≤ CMp−1
(
∥(1− Jρ)uρ(t

′)∥H1/4(R) + ∥(1− Jσ)uσ(t
′)∥H1/4(R)

)
+ Cr(p−1)/2Mp−1+1/r∥uρ(t′)− uσ(t

′)∥1/r
′

L2(R), (3.3.2)

where C is independent of r. Since
ξ2

ρ2 + ξ2
≤ |ξ|1/4

ρ1/4
,

we have

∥(1− Jρ)uρ(t
′)∥H1/4(R) ≤ ρ−1/4∥uρ(t′)∥H1/2(R) ≤Mρ−1/4. (3.3.3)

Similarly,

∥(1− Jρ)(|Jρuρ(t′)|p−1Jρuρ(t
′))∥L2(R)

≤ ρ−1/4∥|Jρuρ(t′)|p−1Jρuρ(t
′)∥Ḣ1/4(R)

≤ Cρ−1/4∥|Jρuρ(t′)|p−1Jρuρ(t
′)∥

Ḃ
1/4
2,2 (R). (3.3.4)

By Lemma 1.3.14 and the Sobolev embedding,

∥|Jρuρ(t′)|p−1Jρuρ(t
′)∥

Ḃ
1/4
2,2 (R) ≤ C∥Jρuρ(t′)∥Ḃ1/4

4,2 (R)∥Jρuρ(t
′)∥p−1

L4(p−1)(R)

≤ CMp (3.3.5)
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with some positive constant C. Combining (3.3.1), (3.3.2), (3.3.3), and (3.3.5),

∥uρ(t)− uσ(t)∥L2(R)

≤ C(ρ−1/4 + σ−1/4) + Cr(p−1)/2

∫ t

0

∥uρ(t′)− uσ(t
′)∥1−1/r

L2(R) dt
′. (3.3.6)

By (3.3.6) and Lemma 3.2.3,

∥uρ(t)− uσ(t)∥L2(R) ≤ C
(
(ρ−1/4 + σ−1/4)1/r + r(p−3)/2t

)r
.

For any ε > 0, let r > log2(1/ε), t < log2(1/ε)
(3−p)/2, ρ, σ > 24+2/(log2(1/ε),(

(ρ−1/4 + σ−1/4)1/r + r(p−3)/2t
)r ≤ 2log2 ε = ε.

This shows that uρ is a Cauchy net in L∞(−1/4, 1/4;L2(R)). By repeating this argument, uρ is shown
to be a Cauchy net in L∞(−T, T ;L2(R)) for any T > 0 and therefore (uρ)ρ≥0 converges locally uniformly
in time. Let u ∈ L∞(R, H1/2) be the L2(R) limit of uρ. Since ∥uρ∥L∞(R;H1/2(R)) ≤M for any ρ ≥ 0, by
Lemma 1.3.2, u is also estimated by ∥u∥L∞(R;H1/2(R)) ≤M . Then we have ∫ t

0

U(±(t− t′))Jρ

(
|Jρuρ(t′)|p−1Jρuρ(t

′)
)
dt′

−
∫ t

0

U(±(t− t′))|u(t′)|p−1u(t′)dt′

L2(R)

≤
∫ t

0

(1− Jρ)
(
|Jρuρ(t′)|p−1Jρuρ(t

′)
)

L2(R)
dt′

+

∫ t

0

|Jρuρ(t′)|p−1Jρuρ(t
′)− |u(t′)|p−1u(t′)


L2(R)

dt′.

For any 0 ≤ t′ ≤ t, ∥(1 − Jρ)(|Jρuρ(t′)|p−1Jρuρ(t
′))∥L2(R) goes to 0 as ρ → ∞ by (3.3.4) and (3.3.5).

Moreover, by a similar calculation to (3.3.2), it is shown that

∥|Jρuρ(t′)|p−1Jρuρ(t
′)− |u(t′)|p−1u(t′)∥L2(R)

≤ C + Cr(p−1)/2∥uρ(t′)− u(t)∥1−1/r
L2(R)

holds. Then, by the Lebesgue dominated convergence theorem,∫ t

0

U(±(t− t′))Jρ

(
|Jρuρ(t′)|p−1Jρuρ(t

′)
)
dt′

−
∫ t

0

U(±(t− t′))|u(t′)|p−1u(t′)dt′

L2(R)

≤
∫ t

0

(1− Jρ)
(
|Jρuρ(t′)|p−1Jρuρ(t

′)
)

L2(R)
dt′

→ 0

for any t ∈ R as ρ → ∞. This means, each of the terms of (3.2.1)ρ converges those of (3.2.1) in L2(R)
for any t and therefore, u ∈ L∞(R;H1/2(R)) is a solution to (3.1.1).
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3.3.2 Proof of the Continuity of Solutions

In this subsection, we prove that energy conservation and continuity in time of H1/2(R) valued solution,
and the continuous dependence of solutions on initial data in the energy space H1/2(R).

Let u1,0 and u2,0 ∈ H1/2(R). Let u1 and u2 ∈ L∞(R;H1/2(R)) be the solutions of (3.1.1) with initial
data u1,0 and u2,0, respectively. Then, by the same argument as in subsection 3.3.1, for any t ∈ R and
p > 2,

∥u1(t)− u2(t)∥L2(R) ≲ ∥u1,0 − u2,0∥L2(R) + p

∫ t

0

u1(t′)− u2(t
′)
1−1/p

L2(R) dt
′.

Then by Lemma 3.2.3 we obtain

∥u1(t)− u2(t)∥L2 ≲
(
∥u1,0 − u2,0∥pL2 + t

)1/p
.

This shows that the solutions of (3.1.1) for H1/2(R) initial data is unique and that the solutions depends
on initial data continuously in L2(R) locally uniformly in time.

Next, we show the energy conservation. Let u0 ∈ H1/2(R) and u ∈ L∞(R;H1/2(R)) be the solution
of (3.1.1) for the initial data u0. Let ρ > 0 and uρ ∈ L∞(R;H1/2) be the solutions of (3.2.1)ρ for the
initial data Jρu0. By Lemma 1.3.2, for any t ∈ R,

E(u(t)) ≤ lim inf
ρ→∞

Eρ(uρ(t)) = lim inf
ρ→∞

Eρ(Jρu0) ≤ E(u0).

Moreover, since u is the unique solution, the solution for the initial data u(t) coincides with u(· + t).
Then we obtain the inverse inequality by the same argument. This shows the energy conservation.

Since H1/2(R) valued solution of (3.1.1) are in C(R;L2(R)), they are also continuous in H1/2(R)
by the energy conservation and Lemma 3.2.6. Similarly to the continuously dependence of solutions
in L2(R), it is shown that an H1/2(R) valued solution also continuously depends on the initial data in
H1/2(R) for each t ∈ R. Since an H1/2(R) valued solution is in C(R;H1/2(R)), by Lemma 3.2.6 again,
H1/2(R) valued solutions continuously depend on the initial data in H1/2(R) locally uniformly in time.
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Chapter 4

Nonexistence of Solutions to (SR)
without Gauge Invariance

4.1 Introduction

In this chapter, we consider the Cauchy problem for the semirelativistic equations{
i∂tu± (m2 −∆)1/2u = λ|u|p, t ∈ R, x ∈ R,
u(0) = u0, x ∈ R,

(4.1.1)

with λ ∈ C\{0} and m ∈ R.
Here, we are interested in the local solvability of the Cauchy problem of (4.1.1). In general spacial

dimension n, by the standard contraction argument, we have the unique local solution to (4.1.1) for
s > n/2 and u0 ∈ Hs(Rn). Moreover, (4.1.1) is expected to have a local solution for any Hs(Rn) initial

data with s > s
(SR)
1,p , where s

(SR)
1,p is defined as (1.4.1). However, in Chapter 2, it is shown that for n = 1,

p = 2, and s < 1/2, the solution map (4.1.1) is not C2 in Hs(R). This means that it is impossible
to obtain local solution to (4.1.1) by an iteration argument. In this chapter, we discuss about (4.1.1)
further from a negative standpoint and we show the sharp criteria of the smoothness of initial data so
that for any Hs(R) initial data and for sufficiently small T > 0, we have a time-local solution to (4.1.1)
in C([0, T ), Hs(R)).

Nonexistence results for local and global solutions have been obtained by test function method which
is introduced by Zhang in [93, 94]. There is a large literature on test function method and we refer the
reader to [52, 53, 54, 55]. Test function method is a method to deny the existence of weak solutions
by showing a contradiction of weak equations with a sequence of test functions. To apply test function
method to (4.1.1), however, a serious difficulty arises when we try to handle the non-local operator
(m2 − ∆)1/2. It is because in order to show a contradiction of a weak equation, we need to cancel
unknown weak solutions in the weak equation. In order to cancel weak solutions, the positivity of
nonlinearity and pointwise estimate of test functions are required but it seems difficult to estimate a
test function with (m2 −∆)1/2 pointwisely, since (m2 −∆)1/2 is non-local. To overcome this difficulty,
we apply −Imλ(i∂t ∓ (m2 −∆)1/2) to (4.1.1) to obtain

□Im(λu) +m2Im(λu) = ∂2t Im(λu)−∆Im(λu) +m2Im(λu) = −|λ|2∂t|u|p. (4.1.2)

We remark that this transformation is a modified derivation of Klein-Gordon equation from semirela-
tivistic equation in Section 1.2. In Section 4.2, we revisit the transformation of (4.1.1).

51
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By (4.1.2) and the associated test function method, it can be shown that there exists no global
solutions to (4.1.1) with m = 0 and n = 1 for 1 < p ≤ 2. In [55], Inui shows that the large data

blow-up for s ≥ s
(SR)
1,p and nonexistence of local solutions for s < sp to (4.1.1) with n ≥ 1 and m ∈ R

by improving test function method for (4.1.2). We also remark that similar nonexistence results are
obtained for the Cauchy problem of nonlinear Schrödinger equations

i∂tu+∆u = λ|u|p

in the case of Rn by Inui and Ikeda in [52, 53] and Ikeda and Wakasugi in [54] and in the case of
Tn = Rn/2πZn by Oh in [78]. We remark that in earlier works above, in the case of Rn, the non-existence
of solutions are argued by scaling criticality. But in this chapter, we show that the non-existence of
solutions to (4.1.1) is obtained even in scaling subcritical case.

To restate our main result, we reintroduce the definition of time-local weak solutions of (4.1.1). For
T > 0, we define function spaces A and AT as follows:

A = C([0,∞);H2(R;R)) ∩ C1([0,∞);H1(R;R)),
AT = {ψ ∈ X| suppψ ⊂ (−∞, T )× R}.

Let (· | ·) be the usual L2 scalar product defined by (f | g) =
∫
fg. Then we define weak local solutions

to (4.1.1).

Definition 4.1.1. Let T > 0 and u0 ∈ L1
loc(R). We say that u is a weak time-local solution to (4.1.1),

if u belongs to L1
loc(0, T ;L

2(R) ∩ Lp(R)) and the following identity∫ T

0

(
u(t)

⏐⏐i∂tψ(t)± (m2 −∆)1/2ψ(t)
)
dt = i(u0|ψ(0)) + λ

∫ T

0

(
|u(t)|p

⏐⏐ψ(t))dt (4.1.3)

holds for any ψ ∈ AT , where the double-sign corresponds to the sign of (4.1.1).

Then we restate our main result below:

Theorem 4.1.1. Let 1 < p <∞ and let f ∈ L1
loc(R;R) satisfy

∃δ > 0 s.t. f > 0 on (−δ, δ) and f is decreasing on (0, δ), (4.1.4)

lim
ε↘0

f(ε) = ∞. (4.1.5)

Then there exists no T > 0 such that there exists a local weak solution to (4.1.1) with u0 = −iλ−1
f .

In Remark 1.5.4, It is shown that there exists f ∈ H1/2(R) such that f satisfies (4.1.4) and (4.1.5).
Since Hs(R) ↪→ L∞(R) with s > 1/2, this means that H1/2(R) is the threshold so that for any Hs(R)
initial data and some T > 0, we have a solution in C(⌈0, T ), Hs(R))∩C1(⌈0, T ), Hs−1(R)) to the Cauchy
problem of (4.1.1).

In Section 4.3, We give a proof of Theorem 4.1.1. The difficulty to prove Theorem 4.1.1 is the
construction of a sequence of test functions to obtain the nonexistence results in scaling subcritical
case. Since the sequence of test functions introduced by Zhang in [93, 94] is constructed by the scaling
transformation under which (4.1.1) is invariant, it seems impossible to obtain the nonexistence results
in scaling subcritical case with his test functions. To overcome this difficulty, we cancel the second
derivatives of test functions and break the balance of scaling for test functions. In particular, we use a
test function of the form

ψ(t, x) = ϕ1(t+ x)ϕ2(t− x).

A direct calculation gives
□ψ(t, x) = 4ϕ′1(t+ x)ϕ′2(t− x)
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and ψ allows us to scale only ϕ2 without any loss. We remark that with a test function of the form

ψ(t, x) = ϕ1(t)ϕ2(x),

scaling only ϕ2 causes a loss and the nonexistence result of [55] seems to be optimal from the view point
of the scaling criticality. In Section 4.3, we give a detailed proof of Theorem 4.1.1 with this idea.

4.2 Preliminary

In this section, we revisit the modification of (4.1.1) in order to apply a test function method.
The corresponding local weak solutions to (4.1.2) are defined as follows:

Definition 4.2.1. Let T > 0 and u0 ∈ L1
loc(R). We say that u is a weak time-local solution to (4.1.2),

if u belong to L1
loc(0, T ;L

2(R) ∩ Lp(R)) and the following identity∫ T

0

(
Im(λu)(t)

⏐⏐□ψ(t) +m2ψ(t)
)
dt

= ±
(
Re(λu0)

⏐⏐(m2 −∆)1/2ψ(0)
)
+
(
Re(iλu0)

⏐⏐∂tψ(0))
+ |λ|2

∫ T

0

(
|u(t)|p

⏐⏐∂tψ(t))dt (4.2.1)

holds for ψ ∈ C2(R2;R) with suppψ ⊂ (−∞, T ) × R, where the double-sign corresponds to the sign of
(4.1.1).

Weak time-local solutions to (4.1.1) are shown to be those to (4.1.2) as follows:

Lemma 4.2.1. Let u0 ∈ L2(R). Then, time-local weak solutions to (4.1.1) are those to (4.1.2).

proof. Let ϕ ∈ C2(R2;R). Then (−∆)1/2ϕ and ∂tϕ belong to A. By taking real and imaginary parts
of (4.1.3) with ψ replaced by λ(−∆)1/2ϕ and λ∂tϕ, respectively, we obtain

Re

∫ ∞

0

(
λu(t)

⏐⏐i∂2t ϕ(t)± ∂t(−∆)1/2ϕ(t)
)
dt

=

∫ ∞

0

(
v(t)

⏐⏐∂2t ϕ(t))dt± ∫ ∞

0

(
Re(λu(t))

⏐⏐∂t(−∆)1/2ϕ(t)
)
dt

= −(v(0)|∂tϕ(0)) + |λ|2
∫ ∞

0

(
|u(t)|p

⏐⏐∂tϕ(t))dt,
Im

∫ ∞

0

(
λu(t)

⏐⏐i∂t(−∆)1/2ϕ(t)∓∆ϕ(t)
)
dt

= −
∫ ∞

0

(
Re(λu(t))

⏐⏐∂t(−∆)1/2ϕ(t)
)
dt∓

∫ ∞

0

(
v(t)

⏐⏐∆ϕ(t))dt
=
(
Re(λu0)

⏐⏐(−∆)1/2ϕ(0)
)
.

By combining those identities, we obtain (4.2.1). Q.E.D.

Remark 4.2.2. For L2(R) initial data and T > 0, solutions to (4.1.1) which belong to L1
loc(0, T ;L

p(R))∩
C([0, T );L2(R)) ∩C1([0, T ), H−1(R)) are also shown to satisfy (4.1.3) and therefore they are also weak
time-local solutions to (4.1.2).
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4.3 Proof of Theorem 4.1.1

For simplicity, we take λ = 1. Assume that for 0 < T < T ′ < min(1, δ), there is a local weak solution
to (4.1.1) on [0, T ′]. Let ϕ ∈ C∞(R; [0, 1]) satisfy

ϕ(y) =

⎧⎪⎨⎪⎩
1 if y < 0,

↘ if 0 ≤ y ≤ T,

0 if y > T.

Let 0 < ρ < 1 and let ϕρ(y) = ϕ(y/ρ) , ϕ′ρ(y) = ϕ′(y/ρ). Let l ∈ Z satisfy l ≥ p′ and let

ψρ(t, x) = −ϕ(t− x)lϕρ(t+ x)l.

Then
suppψρ ⊂ (−∞, T ]× [−min(1, δ),min(1, δ)].

The first term of the right hand side of (4.2.1) is canceled since f is real-valued, and we estimate other
terms on the right hand side of (4.2.1) by (4.1.4) as follows:

(Re(iu0) | ∂tψρ(0))

≥ ρ−1l

∫ Tρ

0

f(x)|ϕ′ρ(x)|ϕρ(x)l−1dx

≥ f(ρδ),∫ T

0

(|u(t)|p | ∂tψρ(t, x))dt

≥ ρ−1l

∫ T

0

(|u(t)|p | |ϕ′ρ(t+ x)|ϕρ(t+ x)l−1ϕ(t− x)l)dt

= ρ−1l∥u(t)|ϕ′ρ(t+ x)|1/pϕρ(t+ x)(l−1)/pϕ(t− x)l/p∥pLp([0,T ]×R).

Let
I = ∥u(t)|ϕ′ρ(t+ x)|1/pϕρ(t+ x)(l−1)/pϕ(t− x)l/p∥Lp([0,T ]×R).

By the Hölder and Young inequalities,⏐⏐⏐⏐ ∫ T

0

(Im(λu)(t) | m2ψρ(t))dt

⏐⏐⏐⏐ ≤ m221/p
′
∥u(t)∥L1([0,T ];Lp([−1,1])),⏐⏐⏐⏐ ∫ T

0

(Im(λu)(t) | □ψρ(t))dt

⏐⏐⏐⏐
≤ 4ρ−1l2

∫ T

0

⏐⏐(Im(λu)(t) | ϕ′(t− x)ϕ′ρ(t+ x)ϕ(t− x)l−1ϕρ(t+ x)l−1)
⏐⏐dt

≤ 4ρ−1l2∥ϕ′∥1+1/p′

L∞(R)∥1∥Lp′ ({(t,x);0≤t+x≤ρ, 0≤t−x≤1})I

= ρ−1/p2(2p
′−1)/p′

l2∥ϕ′∥1+1/p′

L∞(R) I

≤ ρ−1lIp + p−p′/pp′−122p
′−1l2p

′−p′/p∥ϕ′∥p
′+1

L∞(R),

where 1/p′ = 1− 1/p. By (4.2.1) and the estimates above, we have

f(ρδ) ≤ 21/p
′
m2∥u(t)∥L1([0,T ];Lp([−1,1])) + 22p

′−1p−p′/pp′−1l2p
′−p′/p∥ϕ′∥p

′+1
L∞(R)

and by taking ρ ↓ 0, this is a contradiction to (4.1.5).
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Chapter A.1

Study of Semirelativistic System

A.1.1 Introduction

In this chapter, we study the following semirelativistic systems:⎧⎪⎨⎪⎩
i∂tu+ (m2

u −∆)1/2u = λuv, t ∈ R, x ∈ R,
i∂tv − (m2

v −∆)1/2v = λ
c u

2, t ∈ R, x ∈ R,
(u(0), v(0)) = (u0, v0), x ∈ R,

(A.1.1.1)

⎧⎪⎨⎪⎩
i∂tu+ (m2

u −∆)1/2u = λuv, t ∈ R, x ∈ R,
i∂tv + (m2

v −∆)1/2v = λ
c u

2, t ∈ R, x ∈ R,
(u(0), v(0)) = (u0, v0), x ∈ R,

(A.1.1.2)

where λ ∈ C\{0}.
The aim of this chapter is to show that (A.1.1.1) has a similar property to (2.1.1) and (A.1.1.2) has

a similar property to (3.1.1). We remark that the systems (A.1.1.1) and (A.1.1.2) are also regarded as
a semirelativistic approximation of the Schrödinger system{

i∂tu+ σ1

2m∆u = λuv,

i∂tv +
σ2

2M∆v = µu2,
(A.1.1.3)

where σj ∈ {−1, 1}. We refer the reader to [48, 49, 50, 51] for recent results on the Cauchy problem for
(A.1.1.3). In the case of the Cauchy problem for (A.1.1.3) in the L2(R)×L2(R) setting, the signs of σ1,
σ2 are not essential [50].

Since the charge of solutions to (A.1.1.1) is conserved, we have the following well-posedness of
(A.1.1.1):

Theorem A.1.1.1. (A.1.1.1) is time-globally well-posed in Hs(R)×Hs(R) setting with s ≥ 0. Moreover,
for (u0, v0) ∈ L2(R)×L2(R), a pair of L2(R)×L2(R) solutions (u, v) corresponding to (u0, v0) satisfies

∥u(t)∥L2(R) + c∥v(t)∥L2(R) = ∥u0∥L2(R) + c∥v0∥L2(R).

We also have the following non-smoothness result for the solution map of (A.1.1.1).

Theorem A.1.1.2. The solution map of (A.1.1.1) is not C3 in the Hs(R)×Hs(R) setting with −1/2 <
s < 0. In particular, if −1/2 < s < 0, then for some t > 0 and initial data

u0 = F−1[χ[1,∞)⟨·⟩−1/2−s−ε] ∈ Hs(R)
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and
v0 = F−1[χ(−∞,−1]⟨·⟩−1/2−s−ε] ∈ Hs(R)

with 0 < ε < −2s/3,∫ t

0

U1(t− t′)

(
U2(−t′)v0

∫ t′

0

U1(t
′′ − t′)

(
U1(t

′′)u0U2(−t′′)v0
)
dt′′
)
dt′ ̸∈ Hs(R), (A.1.1.4)

where U1(t) = exp(it(m2
u −∆)1/2) and U2(t) = exp(it(m2

v −∆)1/2).

Theorem A.1.1.3. The solution map of (A.1.1.1) is not C2 in the Hs(R) ×Hs(R) setting with s <
−1/2. In particular, if s < −1/2, then for some t > 0 and a sequence of initial datum u0,k defined by

v0,k = u0,k = k−sF−1[χ[−1,1](· − k) + χ[−1,1](·+ k)]

then there exists C > 0 such that for any k, ∥u0,k∥Hs ≤ C and

lim sup
k→∞

∫ t

0

U1(t− t′)
(
U2(−t′)v0,kU1(t′)u0,k

)
dt′

Hs(R)

= ∞. (A.1.1.5)

On the other hand, since the energy of solutions to (A.1.1.2) is conserved, we have the following
well-posedness of (A.1.1.2):

Theorem A.1.1.4. Let λ ∈ C. For any u0 × v0 ∈ H1/2(R) × H1/2(R), there exists a global solution
to (A.1.1.2). Moreover, let u0,n, v0,n and u0, v0 ∈ H1/2(R) satisfy (u0,n, v0,n) → (u0, v0) in H1/2(R) ×
H1/2(R) as n→ ∞, and let (un, vn) and (u, v) be the pairs of solutions of (A.1.1.2) with data (u0,n, v0,n)
and (u0, v0), respectively. Then (un, vn) → (u, v) in L∞(−T, T ;H1/2(R) ×H1/2(R)) for any T > 0 as
n→ ∞.

We also have the following non-smoothness result for the solution map of (A.1.1.2).

Theorem A.1.1.5. The solution maps of (A.1.1.2) is not C2 in the Hs(R) setting with −1/2 < s < 1/2.
In particular, if −1/2 < s < 1/2, then for some t > 0, initial data

u0 = F−1[χ[0,∞)⟨·⟩−1/2−s−ε] ∈ Hs(R)

and
v0 = F−1[χ(−∞,0]⟨·⟩−1/2−s−ε] ∈ Hs(R)

with 0 < ε < 1/6− s/3, ∫ t

0

U1(t− t′)
(
U2(t

′)v0U1(t′)u0
)
dt′ ̸∈ Hs(R). (A.1.1.6)

Theorem A.1.1.6. The solution map of (A.1.1.2) is not C2 in the Hs(R) setting with s < −1/2. In
particular, if s < −1/2, then for some t > 0 and a sequence of initial datum u0,k defined by

u0,k = v0,k = k−sF−1[χ[−1,1](· − k)]

then there exists C > 0 such that for any k, ∥u0,k∥Hs(R) ≤ C and

lim sup
k→∞

∫ t

0

U1(t− t′)U1(t′)u0,kU2(t
′)v0,kdt

′

Hs(R)

= ∞ (A.1.1.7)

for some t > 0.
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Theorems A.1.1.2, A.1.1.3, A.1.1.5, and A.1.1.6 can be proved by the same way as Theorems 2.1.2,
2.1.3, 2.1.4, and 2.1.5. It is because, there is no difference between U1 and U2 to show (A.1.1.4),
(A.1.1.5), (A.1.1.6), and (A.1.1.7).

Theorem A.1.1.1 is obtained almost similarly to Theorem 2.1.1, since v in (A.1.1.1) can be regarded
as u. The difference between Theorems 2.1.1 and A.1.1.1 is the charge conservation. Since the charge of
solutions to (A.1.1.1) is conserved, by the persistence of regularity, we have a unique pair of time-global
solutions to (A.1.1.1). For details see Section A.1.2.

Also theorem A.1.1.2 is obtained almost similarly to Theorem 3.1.1, since the H1/2(R) norms of u
and v can be controlled their conserved energy and charge. In Section A.1.3, we show only how the
H1/2(R) norms of u and v are controlled.

A.1.2 Sketch of Proof of Theorem A.1.1.1

In this section, we show the charge conservation of solutions to (A.1.1.1) only. The construction of
solutions and persistence of regularity can be obtained by a similar argument in the proof of Theorem
2.1.1 based on the following Banach space

Xs,b[T0, T0 + T ] = Xs,b
− [T0, T0 + T ]×Xs,b

+ [T0, T0 + T ].

In particular, we show the following charge conservation law:

∥u(t)∥2L2(R) + c∥v(t)∥2L2(R) = ∥u0∥2L2(R) + c∥v0∥2L2(R).

Although we can justify a formal proof of the L2(R) conservation by the approximation argument by
smooth solutions, here, we derive the conservation laws directly without approximation. In particular,
we derive the conservation law by using associated integral equations in the framework of Bourgain
method as we studied in the previous sections. For the Schrödinger equation, there is a direct proof of
the conservation laws in the framework of the Strichartz estimate [79]. To our knowledge, the direct
proof of conservation law without smooth approximation had not been studied unless the Strichartz
estimate hold. If one calculate the energy by integral equations without Strichartz estimate, a difficulty
arises when one try to justify the each step of calculation. Especially, the integrability of each terms
is a typical problem here, since only the boundedness of the Fourier restriction norms of solutions is
available. To guarantee the integrability in each step, we use the following Lemma and Proposition.

Lemma A.1.2.1. Let p and α satisfy p ≥ 1 and 0 ≤ α ≤ 1/p. Let β, γ, κ satisfy 0 ≤ β, γ, κ ≤ 1/2 and
α+β+γ+κ = 1/p+1/2+ε with ε > 0. Then there exists a positive constant C such that the inequality

∥⟨·+ δ1⟩−αf ∗ g ∗ h∥Lp(R)

≤ C∥⟨·+ δ2⟩βf∥L2(R)∥⟨·+ δ3⟩γg∥L2(R)∥⟨·+ δ4⟩κh∥L2(R)

holds for any real numbers δ1, δ2, δ3, δ4 and any f , g, h such that all the norms on the right hand side
are finite.

proof. By the Hölder and the Young inequalities,

∥⟨·+ δ1⟩−αf ∗ g ∗ h∥Lp(R)

≲ ∥f ∗ g ∗ h∥Lp1 (R)

≲ ∥f∥Lp2 (R)∥g ∗ h∥Lp3 (R)

≲ ∥f∥Lp2 (R)∥g∥Lp4 (R)∥h∥Lp5 (R)

≲ ∥⟨·+ δ2⟩βf∥L2(R)∥⟨·+ δ3⟩γg∥L2(R)∥⟨·+ δ4⟩κh∥L2(R),
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where

1

p1
=

1

p
− α+

αε

α+ β + γ + κ
,

1

p2
=

1

2
+ β − βε

α+ β + γ + κ
,

1

p3
=

1

p1
+ 1− 1

p2
,

1

p4
=

1

2
+ γ − γε

α+ β + γ + κ
,

1

p5
=

1

2
+ κ− κε

α+ β + γ + κ
.

Therefore, we obtain the lemma. Q.E.D.

Proposition A.1.2.1.

∥⟨τ⟩−1ũ(σ − ρ, ξ − η)ṽ(ρ, η)w̃(τ − σ, ξ)∥L1(Rτ×Rξ×Rσ×Rρ×Rη)

≲ ∥u∥
X

0,1/2
±

∥v∥
X

0,1/2
±

∥w∥
X

0,1/2
±

for any u, v, w ∈ X
0,1/2
± .

proof. Let

N(τ, ξ, σ, ρ, ε) = max(|τ |,
⏐⏐σ − ρ± |ξ − η|

⏐⏐, ⏐⏐ρ± |η|
⏐⏐, ⏐⏐τ − σ ± |ξ|

⏐⏐),
Then we have |ξ|+ |ξ − η|+ |η| ≤ 4N . We also separate the integral region as follows

B1 =
{
(τ, σ, ξ, ρ, η) |N(τ, ξ, σ, ρ, ε) =

⏐⏐τ ⏐⏐},
B2 =

{
(τ, σ, ξ, ρ, η) |N(τ, ξ, σ, ρ, ε) =

⏐⏐σ − ρ± |ξ − η|
⏐⏐},

B3 =
{
(τ, σ, ξ, ρ, η) |N(τ, ξ, σ, ρ, ε) =

⏐⏐ρ± |η|
⏐⏐},

B4 =
{
(τ, σ, ξ, ρ, η) |N(τ, ξ, σ, ρ, ε) =

⏐⏐τ − σ ± |ξ|
⏐⏐}.

By Lemmas 2.2.7, A.1.2.1 and the Hölder inequality,

∥χB1
(τ, ξ, σ, η)⟨τ⟩−1ũ(σ − ρ, ξ − η)ṽ(ρ, η)w̃(τ − σ, ξ)∥L1(Rτ×Rξ×Rσ×Rρ×Rη)

≲ ∥⟨τ⟩−1/2⟨ξ⟩−1/4⟨η⟩−1/4

· ũ(σ − ρ, ξ − η)ṽ(ρ, η)w̃(τ − σ, ξ)∥L1(Rτ×Rξ×Rσ×Rρ×Rη)

≲
⟨ξ⟩−1/4⟨η⟩−1/4∥⟨τ ± |ξ − η|⟩1/2ũ(τ, ξ − η)∥L2(Rτ )

· ∥⟨τ ± |η|⟩1/2ṽ(τ, η)∥L2(Rτ )


L2(Rξ;L1(Rη))

∥⟨τ ± |ξ|⟩1/2w̃(τ, ξ)∥L2(Rτ×Rξ)

≲ ∥u∥
X

0,1/2
±

∥v∥
X

0,1/2
±

∥w∥
X

0,1/2
±

.

Moreover,

∥χB2
(τ, ξ, σ, η)⟨τ⟩−1ũ(σ − ρ, ξ − η)ṽ(ρ, η)w̃(τ − σ, ξ)∥L1(Rτ×Rξ×Rσ×Rρ×Rη)

≲ ∥⟨τ⟩−1⟨ξ⟩−1/4⟨η⟩−1/4⟨σ − ρ± |ξ − η|⟩1/2

· ũ(σ − ρ, ξ − η)ṽ(ρ, η)w̃(τ − σ, ξ)∥L1(Rτ×Rξ×Rσ×Rρ×Rη)

≲
⟨ξ⟩−1/4⟨η⟩−1/4∥⟨τ ± |ξ − η|⟩1/2ũ(τ, ξ − η)∥L2(Rτ )

· ∥⟨τ ± |η|⟩1/2ṽ(τ, η)∥L2(Rτ )


L2(Rξ;L1(Rη))

∥⟨τ ± |ξ|⟩1/2w̃(τ, ξ)∥L2(Rτ×Rξ)

≲ ∥u∥
X

0,1/2
±

∥v∥
X

0,1/2
±

∥w∥
X

0,1/2
±

.

The other integrals are estimated similarly. Q.E.D.
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Then we show the charge conservation with Proposition A.1.2.1. Let (u0, v0) ∈ L2(R)× L2(R) and
let T > 0 sufficiently small. Then we have a pair of extensions (u, v) ∈ X

0,1/2
− ×X

0,1/2
+ of the solutions

for the Cauchy problem (A.1.1.1) such that for any t ∈ [0, T ],

u(t) = U1(t)u0 − iλ

∫ t

0

U1(t− t′)u(t′)v(t′)dt′,

v(t) = U2(−t)v0 − ic−1λ

∫ t

0

U2(t
′ − t)u(t′)2dt′.

Then

∥u(t)∥2L2(R) = ∥U1(t)u∥2L2(R)

=

u0 − iλ

∫ t

0

U1(−t′)u(t′)v(t′)dt′
2
L2(R)

= ∥u0∥2L2(R) − 2Im

(
û0

⏐⏐⏐⏐λ ∫ t

0

F[U1(−t′)u(t′)v(t′)]dt′
)

+

λ ∫ t

0

F[U1(−t′)u(t′)v(t′)]dt′
2
L2(R)

.

We have ∫ t

0

f(t′)dt′ =

∫
exp(itτ)− 1

iτ
f̂(τ)dτ

for any f ∈ L1(R) such that f̂ ∈ ⟨·⟩L1(R). Moreover, the inequalities

∥F[uv]∥L∞(Rξ;L1(Rt)) ≤ ∥u∥L2(R2)∥v∥L2(R2) ≤ ∥u∥
X

0,1/2
−

∥v∥
X

0.1/2
+

hold by the Hölder inequality and∫∫∫∫
R4

exp(it·)− 1

i·
ũ(ρ− σ, η − ξ)ṽ(ρ, η)ũ(σ − ·, ξ) dξ dσ dη dρ ∈ L1(R)

by Proposition A.1.2.1. Thenλ ∫ t

0

F[U1(−t′)u(t′)v(t′)]dt′
2
L2(R)

= 2Re

∫
R

∫ t

0

λF[u(t′)v(t′)] λF

[ ∫ t′

0

U1(t′ − t′′)u(t′′)v(t′′)dt′′
]
dt′dξ

= −2Im

∫
R

∫ t

0

λF[u(t′)v(t′)](F[U1(t′)u0]− F[u(t′)])dt′dξ

= 2Im

(
û0

⏐⏐⏐⏐λ ∫ t

0

F[U1(t
′)u(t′)v(t′)]dt′

)
+ 2Im λ

∫∫∫∫∫
R5

exp(itτ)− 1

iτ
ũ(ρ− σ, η − ξ)ṽ(ρ, η)ũ(σ − τ, ξ) dτ dξ dσ dη dρ.

Finally we obtain

∥u(t)∥2L2(R) − ∥u0∥2L2(R)

= 2Im λ

∫∫∫∫∫
R5

exp(itτ)− 1

iτ
ũ(ρ− σ, η − ξ)ũ(σ − τ, ξ)ṽ(ρ, η) dτ dξ dσ dη dρ.
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Similarly, we have

∥v(t)∥2L2(R) = ∥U2(−t)v∥2L2(R)

= ∥v0∥L2(R) − 2Im

(
v̂0

⏐⏐⏐⏐c−1λ

∫ t

0

F
[
U2(t

′)u(t′)2
]
dt′
)

+

c−1λ

∫ t

0

F[U2(−t′)u(t′)2dt′]
2
L2(R)

and c−1λ

∫ t

0

Fx[U2(t
′)u(t′)2]dt′

2
L2(R)

= −2Im

∫
R

∫ t

0

c−1λF[u(t′)2] F

[
ic−1λ

∫ t′

0

U2(t′′ − t′)u(t′′)2dt′′
]
dt′dξ

= 2Im

(
v̂0

⏐⏐⏐⏐c−1λ

∫ t

0

F[U2(t
′)u(t′)2]dt′

)
+

2

c
Im λ

∫∫∫∫∫
R5

exp(itτ)− 1

iτ
ũ(σ − ρ, ξ − η)ũ(ρ, η)ṽ(σ − τ, ξ) dτ dξ dσ dη dρ.

Then

∥v(t)∥2L2(R) − ∥v0∥2L2(R)

= 2c−1Im λ

∫∫∫∫∫
R5

exp(itτ)− 1

iτ
ũ(σ − ρ, ξ − η)ũ(ρ, η)ṽ(σ − τ, ξ) dτ dξ dσ dη dρ.

In addition,

− Imλ

∫∫∫∫∫
R5

exp(itτ)− 1

iτ
ũ(σ − ρ, ξ − η)ũ(ρ, η)ṽ(σ − τ, ξ) dτ dξ dσ dη dρ

= Imλ

∫∫∫∫∫
R5

exp(−itτ)− 1

i(−τ)
ũ(σ − ρ, ξ − η)ũ(ρ, η) ṽ(σ − τ, ξ) dτ dξ dσ dη dρ

= Imλ

∫∫∫∫∫
R5

exp(−itτ)− 1

i(−τ)
ũ(τ + ρ′ − ρ, ξ − η)ũ(ρ, η) ṽ(ρ′, ξ) dξ dσ dη dρ′ dτ

= Imλ

∫∫∫∫∫
R5

exp(itτ ′)− 1

iτ ′
ũ(ρ′ − σ′, ξ − η)ũ(σ′ − τ ′, η) ṽ(ρ′, ξ) dξ dσ′ dη dρ′ dτ ′

= Imλ

∫∫∫∫∫
R5

exp(itτ ′)− 1

iτ ′
ũ(ρ′ − σ′, η′ − ξ′)ũ(σ′ − τ ′, ξ′) ṽ(ρ′, η′) dξ′ dσ′ dη′ dρ′ dτ ′,

where ρ′ = σ − τ , σ′ = ρ− τ , τ ′ = −τ , ξ′ = η, and η′ = ξ. Finally, we have

∥u(t)∥2L2(R) + c∥v(t)∥2L2(R) = ∥u0∥2L2(R) + c∥v0∥2L2(R)

for t ∈ [0, T ].

A.1.3 Proof of Theorem A.1.1.2

Here, we show how the H1/2(R) norms of u and v are controlled. At first, we show the conservation
law of charge and energy.
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Lemma A.1.3.1. Let (u0, v0) ∈ H1/2(R)×H1/2(R). Let (u, v) ∈ C(R;H1/2(R)×H1/2(R))∩C1(R;H−1/2(R)×
H−1/2(R)) be solutions to the integral equations (A.1.1.2) for the initial data (u0, v0). Then (Q(u(t), v(t)) =
(Q(u0, v0)) for any t, where

Q(f, g) = ∥f∥2L2(R) + c∥g∥2L2(R).

proof. The following formal calculations are justified by extending L2(R) scalar product to H−1/2(R)-
H1/2(R) duality:

d

dt
∥u(t)∥2L2(R) = 2Re⟨∂tu(t) | u(t)⟩H1/2(R)

= 2Im⟨i∂tu(t) | u(t)⟩H1/2(R)

= 2Im⟨−(m2
u −∆)1/2 u(t) + λu(t)v(t) | u(t)⟩H1/2(R)

= 2Im(λv(t) | u(t)2),
d

dt
∥v(t)∥2L2(R) = 2Re⟨∂tv(t) | v(t)⟩H1/2(R)

= 2Im⟨i∂tv(t) | v(t)⟩H1/2(R)

= 2Im⟨−(m2
v −∆)1/2 v(t) + c−1λu(t)2 | v(t)⟩H1/2(R)

= −2

c
Im(λv(t) | u(t)2).

Therefore, we obtain that

∥u(t)∥2L2(R) + c∥v(t)∥2L2(R) = ∥u0∥2L2(R) + c∥v0∥2L2(R)

for any t.
Q.E.D.

Lemma A.1.3.2. Let (u0, v0) ∈ H1/2(R)×H1/2(R). Let (u, v) ∈ C(R;H1(R)×H1(R))∩C1(R;L2(R)×
L2(R)) be solutions to the integral equations (A.1.1.2) for the initial data (u0, v0). Then E(u(t), v(t)) =
E(u0, v0) for any t, where

E(f, g) = ∥(m2
u −∆)

1
4 f∥2L2(R) +

c

2
∥(m2

v −∆)1/4g∥2L2(R) − Re(λg | f2) (A.1.3.1)

for any t.

proof. ∥(m2
u −∆)1/4u∥2L2(R) and ∥(m2

v −∆)1/4v∥2L2(R) are differentiable and we have

d

dt
∥(m2

u −∆)
1
4u(t)∥2L2(R) = 2Re(−i∂tu(t) + λu(t)v(t) | ∂tu(t))

= Re(λv(t) | ∂t(u(t)2))
d

dt
∥(m2

v −∆)
1
4 v(t)∥2L2(R) = 2Re

(
− i∂tv +

λ

c
u(t)2

⏐⏐⏐⏐∂tv(t))
=

2

c
Re(∂t(λv)(t) | u(t)2).

Therefore, we obtain that E(u(t), v(t)) = E(u0, v0) for any t, Q.E.D.

By Lemmas A.1.3.1 and A.1.3.2, we obtain the H1/2(R) boundedness of solutions to (A.1.1.2), as
shown below. By using this H1/2(R) boundedness of solutions, Theorem A.1.1.2 follows from a similar
proof to Theorem 3.1.1 with the corresponding approximation integral equations. At the last of this
section, we show the H1/2(R) boundedness of solutions to (A.1.1.2).
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Proposition A.1.3.1. Let (u0, v0) ∈ H1(R) × H1(R) and let (u, v) ∈ C([−T, T ];H1(R) × H1(R)) be
solutions to the integral equations (A.1.1.2) for the initial data (u0, v0) with some T > 0. Then

sup
t∈[−T,T ]

∥u(t)∥H1/2(R) + ∥v(t)∥H1/2(R) ≲
√
E(u0, v0) +Q(u0, v0).

proof. It is enough to show

sup
t∈[−T,T ]

∥(m2
u −∆)1/2u(t)∥2L2(R) +

c

2
∥(m2

v −∆)1/2v(t)∥2L2(R)

≲ E(u0, v0) +Q(u0, v0)
2.

We note that by the Hölder and Gagliardo-Nirenberg inequalities,

|(λv(t) | u2(t))| ≲ ∥v(t)∥L2(R)∥u(t)∥2L4(R)

≲ ∥v(t)∥L2(R)∥u(t)∥L2(R)∥u(t)∥Ḣ1/2(R)

≤ 1√
c
Q(u0, v0)∥(m2

u −∆)1/2u(t)∥L2(R).

Then

∥(m2
u −∆)

1
4u(t)∥2L2(R) +

c

2
∥(m2

v −∆)1/4v(t)∥2L2(R)

= E(u0, v0) + Re(λv(t) | u(t)2)

≤ E(u0, v0) +
1√
c
Q(u0, v0)∥(m2

u −∆)1/2u(t)∥L2(R).

This shows

∥(m2
u −∆)

1
4u(t)∥2L2(R) +

c

2
∥(m2

v −∆)1/4v(t)∥2L2(R)

≤ 2E(u0, v0) +
4

c
Q(u0, v0)

2.

Q.E.D.



Chapter A.2

Study of Weighted Integral

A.2.1 Introduction

In this chapter, we revisit Lemma 1.3.11 by studying the boundedness of integral operators of convolution
type in the Lebesgue space with weights. Moreover, a special attention will be made on an optimality
criterion with respect to the growth rate of weights.

To illustrate the problem, we revisit the standard property that the Sobolev space Hs(Rn) =
(1 − ∆)−s/2L2(Rn) forms an algebra for s > n/2 from the point of view from the weighted L2(Rn)-
boundedness of convolution. The corresponding bilinear estimate in the Sobolev space takes the form

∥uv∥Hs(Rn) ≤ C∥u∥Hs(Rn)∥v∥Hs(Rn). (A.2.1.1)

The bilinear estimate of this type was may be traced back at least to the paper by Saut and Temam
[85]. There are many papers on further refinements and improvements on this subject as well as various
applications to nonlinear partial differential equations. (see for instance [2, 23, 28, 31, 34, 35, 56, 57,
60, 61, 69, 73, 83, 85, 87, 89, 90] and references therein.)

In the Fourier representation, multiplication of functions is realized by convolution of the corre-
sponding Fourier transformed functions:

F(uv)(ξ) = (2π)n/2(û ∗ v̂)(ξ) = (2π)n/2
∫
Rn

û(ξ − η)v̂(η)dη

and the estimate (A.2.1.1) is equivalent to the bilinear estimate of the form

∥ω(û ∗ v̂)∥L2(Rn) ≤ C∥ωû∥L2(Rn)∥ωv̂∥L2(Rn)

with ω(ξ) = (1 + |ξ|2)s/2, which is also rewritten asω(( û
ω

)
∗
( v̂
ω

))
L2(Rn)

≤ C∥û∥L2(Rn)∥v̂∥L2(Rn). (A.2.1.2)

By a duality argument, (A.2.1.2) is equivalent to the trilinear estimate of the form⏐⏐⏐⏐⏐
∫
Rn

∫
Rn

ω(ξ)
1

ω(ξ − η)

1

ω(η)
û(ξ − η)v̂(η)ŵ(ξ) dη dξ

⏐⏐⏐⏐⏐
≤ C∥û∥L2(Rn)∥v̂∥L2(Rn)∥ŵ∥L2(Rn). (A.2.1.3)

65
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By a simple change of variables, (A.2.1.3) is equivalent to⏐⏐⏐⏐⏐
∫
Rn

∫
Rn

ω(ξ + η)
1

ω(ξ)

1

ω(η)
û(ξ)v̂(η)ŵ(ξ + η) dη dξ

⏐⏐⏐⏐⏐
≤ C∥û∥L2(Rn)∥v̂∥L2(Rn)∥ŵ∥L2(Rn). (A.2.1.4)

This gives a motivation to study the boundedness of the integrals of the form∫
Rn

∫
Rn

w0(x+ y)w1(x)w2(y)f(x+ y)g(x)h(y) dx dy (A.2.1.5)

with weight functions w0, w1, w2, where w1 and w2 are supposedly the inverse weight of w0.

The following theorem is basic in this direction.

Theorem A.2.1.1. Let 2 ≤ p ≤ ∞ and let w0, w1, w2 be non-negative, continuous functions on [0,∞)
satisfying

M1 ≡ sup
r>0

w#
0 (2r)w2(r)∥w1(| · |)∥Lp(B(r)) <∞, (A.2.1.6)

M2 ≡ sup
r>0

w#
0 (2r)w1(r)∥w2(| · |)∥Lp(B(r)) <∞, (A.2.1.7)

where

w#
0 (r) = sup

0≤ρ≤r
w0(ρ),

B(r) = {x ∈ Rn; |x| ≤ r}.

Then, the trilinear estimate∫
Rn

∫
Rn

w0(|x+ y|) w1(|x|) w2(|y|) |f(x+ y)g(x)h(y)| dx dy

≤ (M1 +M2)∥f∥Lp(Rn)∥g∥Lp′ (Rn)∥h∥Lp′ (Rn) (A.2.1.8)

holds for all f ∈ Lp(Rn), g, h ∈ Lp′
(Rn), where p′ is the dual exponent defined by 1/p+ 1/p′ = 1.

proof. For f ∈ Lp(Rn) we define the translation by y ∈ Rn by (τyf)(x) = f(x + y). For S ⊂ Rn, we
denote by χS its characteristic function. Then, by the Hölder and Minkowski inequalities, we obtain∫∫

|x|≤|y|
w0(|x+ y|)w1(|x|)w2(|y|)|f(x+ y)g(x)h(y)| dx dy

≤
∫∫

Rn×Rn

w#
0 (2|y|)χB(|y|)(x)w1(|x|)w2(|y|)|τyf(x)g(x)h(y)| dx dy

≤
∫
Rn

w#
0 (2|y|)∥χB(|y|)w1(| · |)∥Lp(Rn)∥τyf · g∥Lp′ (Rn)w2(|y|)|h(y)| dy

≤M1∥∥τyf · g∥Lp′ (Rn)∥Lp(Rn
y )
∥h∥Lp′ (Rn)

=M1∥f∥Lp(Rn)∥g∥Lp′ (Rn)∥h∥Lp′ (Rn),
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where Lp(Rn
y ) is the L

p(Rn) norm for the variable y. Similarly,∫∫
|x|≥|y|

w0(|x+ y|)w1(|x|)w2(|y|)|f(x+ y)g(x)h(y)| dx dy

≤
∫∫

Rn×Rn

w#
0 (2|x|)χB(|x|)(y)w1(|x|)w2(|y|)|τxf(y)g(x)h(y)| dx dy

≤
∫
Rn

w#
0 (2|x|)∥χB(|x|)w2(| · |)∥Lp(Rn)∥τxf · h∥Lp′ (Rn)w1(|x|)|g(x)| dx

≤M2∥∥τxf · h∥Lp′ (Rn)∥Lp(Rn
x )
∥g∥Lp′ (Rn)

=M2∥f∥Lp(Rn)∥g∥Lp′ (Rn)∥h∥Lp′ (Rn).

Summing those inequalities, we have (A.2.1.8). Q.E.D.

Corollary A.2.1.1. Let 2 ≤ p ≤ ∞ and let w0, w1, w2 be non-negative, continuous functions on [0,∞)
satisfying

M ′
1 = sup

r>0
w0(2r)w2(r)∥w1(| · |)∥Lp(B(r)) <∞, (A.2.1.9)

M ′
2 = sup

r>0
w0(2r)w1(r)∥w2(| · |)∥Lp(B(r)) <∞, (A.2.1.10)

and the estimate
w0(r) ≤ C ′w0(R) (A.2.1.11)

for any r and R with 0 ≤ r ≤ R with C ′ ≥ 1 independent of r and R. Then, the trilinear estimate∫
Rn

∫
Rn

w0(|x+ y|) w1(|x|) w2(|y|) |f(y + x)g(x)h(y)| dx dy

≤ C ′(M ′
1 +M ′

2)∥f∥Lp(Rn)∥g∥Lp′ (Rn)∥h∥Lp′ (Rn)

holds for all f ∈ Lp(Rn), g, h ∈ Lp′
(Rn).

proof. By (A.2.1.11), we have w#
0 (2r) ≤ C ′w0(2r) for any r ≥ 0. Then, the corollary follows from

Theorem A.2.1.1 Q.E.D.

The bilinear estimate (A.2.1.1) follows by choosing p = 2, w0(r) = (1 + r2)s/2, w1(r) = w2(r) =
(1 + r2)−s/2 with s > n/2, which ensures the required square integrability. Moreover, Lemma 1.3.11
also follows by choosing p = 2, w0(r) = (1 + r2)−a/2, w1(r) = (1 + r2)−b/2, and w2(r) = (1 + r2)−c/2

which also ensures the required square integrability. A natural question then arises in connection with
minimal growth rate at infinity in space for w0, 1/w1, 1/w2. Weight functions of the form w(r) =
(1+ r2)n/2(1+ log(1+ r))s with s > 1/2 may be the first candidate with w0 = w, w1 = w2 = 1/w. This
is not optimal since w(r) = (1 + r2)n/2(1 + log(1 + r))1/2

(
1 + log(1 + log(1 + r))

)s
with s > 1/2 has a

slower growth with keeping the required square integrability.
To describe emerging extra logarithmic factors in such an iteration procedure, it is convenient to

introduce the following set F consisting of positive, continuous functions w on [0,∞) satisfying 1/w ∈
L1
loc(0,∞) and the following assumptions (A1) and (A2):

(A1) For any a ∈ R, there exists Ca ≥ 1 such that for any r and R with 0 ≤ r ≤ R, w satisfies the
inequality

w(r)

(∫ r

0

1

w(ρ)
dρ+ 1

)a

≤ Caw(R)

(∫ R

0

1

w(ρ)
dρ+ 1

)a

.



68 Chapter A.2. Study of Weighted Integral

(A2) There exists C > 0 such that the inequality

w(2r) ≤ Cw(r)

holds for all r > 0.

Example 1. The function w defined by w(r) = 1 + r belongs to F with Ca = 1 for a ≥ −1,
Ca = ea+1(−a)−a for a < −1, and C = 2.

Example 2. The function w defined by w(r) = (1 + r)s with s > 1 belongs to F with Ca = 1 for
a ≥ −s,

Ca = (−a)−a(a+ s− as)
as−a−s

s−1 s
2s+a−as

s−1

for a < −s, and C = 2s.

Example 3. The function w defined by w(r) = (1+r2)s/2 for s ≥ 1 belong to F with Ca = 1 for a ≥ 0,

Ca = sa(−a)−aras,a(1 + r2s,a)
−a+(a−1)s/2

for a < 0, where rs,a is defined uniquely by

rs,a(1 + r2s,a)
s/2−1

(∫ rs,a

0

(1 + ρ2)−s/2dρ+ 1

)
=

|a|
s

and C = 2s.

Example 4. Let w(r) = 1 + log(1 + r) and a = −2. Then,

w(r)

(∫ r

0

1

w(ρ)
dρ+ 1

)−2

≤ w(r)

(∫ r

0

1

1 + ρ
dρ+ 1

)−2

=
1

w(r)
→ 0

as r → ∞. This means w ̸∈ F.

Example 5. The function w defined by w(r) = (1 + r)(1 + log(1 + r)) belongs to F with Ca = 1 for
a ≥ 0,

Ca = (−a)−a(1 + r̃s,a)
−1(1 + log(1 + r̃s,a))

−1(2 + log(r̃s,a))
a

for a < 0, where r̃s,a is uniquely defined by

(2 + log(1 + r̃s,a))
(
1 + log(1 + log(1 + r̃s,a))

)
= |a|,

and C = 2 + 2 log 2.

Remark A.2.1.1. For w ∈ F, we apply (A1) with a = 0 to obtain∫ r

0

1

w(ρ)
dρ

≤
∫ 2r

0

1

w(ρ)
dρ =

∫ r

0

1

w(ρ)
dρ+

∫ r

0

1

w(ρ+ r)
dρ

≤ (1 + C0)

∫ r

0

1

w(ρ)
dρ. (A.2.1.12)
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Theorem A.2.1.2. Let 2 ≤ p <∞ and let w ∈ F. Let w0, w1, w2 be defined by

w0(r) = (1 + r)(n−1)/pw(r)1/p
(∫ r

0

1

w(ρ)
dρ+ 1

)−a

,

w1(r) = (1 + r)−(n−1)/pw(r)−1/p

(∫ r

0

1

w(ρ)
dρ+ 1

)−b

,

w2(r) = (1 + r)−(n−1)/pw(r)−1/p

(∫ r

0

1

w(ρ)
dρ+ 1

)−c

with a, b, c ∈ R satisfying either (i) or (ii):
(i) a+ b+ c ≥ 1/p, a+ b > 0, a+ c > 0.

(ii) a+ b+ c > 1/p, a+ b ≥ 0, a+ c ≥ 0.

Then, there exists C > 0 such that the trilinear estimate∫∫
Rn×Rn

w0(|x+ y|)w1(|x|)w2(|y|)|f(x+ y)g(x)h(y)|dx dy

≤ C∥f∥Lp(Rn)∥g∥Lp′ (Rn)∥h∥Lp′ (Rn) (A.2.1.13)

holds for all f ∈ Lp(Rn), g, h ∈ Lp′
(Rn).

Remark A.2.1.2. In the case
∫∞
0
w−1(ρ)dρ <∞, we can choose any a, b, c for (A.2.1.13). In the case

where p = 2 and b = c = 0, assumption (i) is equivalent to a ≥ 1/2. In the case where p = 2 and
b = c > 0, assumption (i) is equivalent to a ≥ 1/2 − 2b with a > −b. In the case where p = 2 and
−a = b = c, assumption (i) breaks down and (ii) is equivalent to −a = b = c > 1/2.

Proof of Theorem A.2.1.2. We prove that w0, w1, w2 defined in the theorem satisfy the assumptions
(A.2.1.9)-(A.2.1.11) in Corollary A.2.1.1. Let r and R satisfy 0 ≤ r ≤ R. By (A1),

w(r)

(∫ r

0

1

w(ρ)
dρ+ 1

)−ap

≤ C−apw(R)

(∫ R

0

1

w(ρ)
dρ+ 1

)−ap

,

which yields

w0(r) ≤ C
1/p
−apw0(R). (A.2.1.14)

By (A2) and (A.2.1.12),

w0(2r) = (1 + 2r)(n−1)/pw(2r)1/p

(∫ 2r

0

1

w(r)
dρ+ 1

)−a

≤ 2(n−1)/p(1 + r)(n−1)/pC1/pw(r)1/p(1 + C0)
(−a)+

(∫ r

0

1

w(ρ)
dρ+ 1

)−a

= 2(n−1)/pC1/p(1 + C0)
(−a)+w0(r), (A.2.1.15)

which yields

w0(2r)w1(r) ≤ 2(n−1)/pC1/p(1 + C0)
(−a)+

(∫ r

0

1

w(r)
dρ+ 1

)−a−b

. (A.2.1.16)
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We estimate w2(| · |) in Lp(B(r)) as

∥w2(| · |)∥Lp(B(r)) ≤ ω
1/p
n−1

(∫ r

0

1

w(ρ)

(∫ ρ

0

1

w(σ)
dσ + 1

)−pc

dρ

)1/p

, (A.2.1.17)

where ωn−1 is the surface measure of the unit ball. To estimate the right hand side of (A.2.1.17) and
M ′

1 of Corollary A.2.1.1, we distinguish four cases:

(i) c ≤ 0. (ii) 0 < c < 1/p. (iii) c = 1/p. (iv) c > 1/p.

(i) In the case where c ≤ 0, we estimate∫ r

0

1

w(ρ)

(∫ ρ

0

1

w(σ)
dσ + 1

)−pc

dρ ≤
∫ r

0

1

w(ρ)

(∫ r

0

1

w(σ)
dσ + 1

)−pc

dρ

≤

(∫ r

0

1

w(ρ)
dρ+ 1

)1−pc

.

Then, M ′
1 is estimated as follows:

M ′
1 ≤ sup

r>0
2(n−1)/pC1/p(1 + C0)

(−a)+

(∫ r

0

1

w(r)
dρ+ 1

)1/p−a−b−c

= 2(n−1)/pC1/p(1 + C0)
(−a)+ .

(ii) In the case where 0 < c < 1/p, we estimate∫ r

0

1

w(ρ)

(∫ ρ

0

1

w(σ)
dσ + 1

)−pc

dρ =
1

1− pc

((∫ r

0

1

w(σ)
dσ + 1

)1−pc

− 1

)

≤ 1

1− pc

(∫ r

0

1

w(σ)
dσ + 1

)1−pc

.

Then, M ′
1 is estimated as follows:

M ′
1 ≤ 1

1− pc
2(n−1)/pC1/p(1 + C0)

(−a)+ .

(iii) In the case where c = 1/p, we estimate∫ r

0

1

w(ρ)

(∫ ρ

0

1

w(σ)
dσ + 1

)−1

dρ = log

(
1 +

∫ r

0

1

w(ρ)
dρ

)
.

Since a+ b > 0, M ′
1 is estimated as follows:

M ′
1 ≤ C1/p(1 + C0)

(−a)+

· sup
r>0

2(n−1)/p

(∫ r

0

1

w(r)
dρ+ 1

)−a−b

log

(
1 +

∫ r

0

1

w(ρ)
dρ

)
= 2(n−1)/pC1/p(1 + C0)

(−a)+ sup
r≥1

r−a−b log r

= 2(n−1)/pC1/p(1 + C0)
(−a)+

1

e(a+ b)
.



A.2.2. A Basic Property of F 71

(iv) In the case where c > 1/p, we estimate

∫ r

0

1

w(ρ)

(∫ ρ

0

1

w(σ)
dσ + 1

)−pc

dρ

=
1

1− pc

((∫ r

0

1

w(σ)
dσ + 1

)1−pc

dρ− 1

)

≤ 1

pc− 1
.

Since a+ b ≥ 0, M ′
1 is estimated as follows:

M ′
1 ≤ 1

pc− 1
2(n−1)/pC1/p(1 + C0)

(−a)+ .

M ′
2 is estimated similarly. Then, the estimate (A.2.1.13) follows from Corollary A.2.1.1. Q.E.D.

In a way similar to the proof of Theorem A.2.1.2, we have the following theorem for p = ∞.

Theorem A.2.1.3. Let w ∈ F. Let w0, w1, w2 be defined by

w0(r) =
(∫ r

0

1

w(ρ)
dρ+ 1

)−a

,

w1(r) =
(∫ r

0

1

w(ρ)
dρ+ 1

)−b

,

w2(r) =
(∫ r

0

1

w(ρ)
dρ+ 1

)−c

with a, b, c ∈ R satisfying

a+ b+ c− ≥ 0 and a+ b− + c ≥ 0,

where b− = −max(0,−b) = min(0, b), c− = −max(0,−c) = min(0, c).
Then, there exists C > 0 such that the trilinear estimate∫∫

Rn×Rn

w0(|x+ y|)w1(|x|)w2(|y|)|f(x+ y)g(x)h(y)| dx dy ≤ C∥f∥L∞(Rn)∥g∥L1(Rn)∥h∥L1(Rn)

holds for all f ∈ L∞(Rn), g, h ∈ L1(Rn).

Theorem A.2.1.2 shows the importance of the class F to the trilinear estimate such as (A.2.1.8).
Accordingly, below we study the class F in details. In Section A.2.2, we study a basic property of F.
In Section A.2.3, we introduce arbitrarily and infinitely iterates of logarithm in connection with F. A
part of the arguments in Sections 2 and 3 are essentially given by Ando, Horiuchi, and Nakai [1]. We
revisit them in the present framework for definiteness. In Section A.2.4, we study optimality of Theorem
A.2.1.2.

A.2.2 A Basic Property of F

In this section we prove:
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Proposition A.2.2.1. For w ∈ F and a ∈ R, we define Wa by

Wa(r) = w(r)

(∫ r

0

1

w(ρ)
dρ+ 1

)a

, r ≥ 0.

Then, Wa ∈ F.

proof. By definition, we see that Wa is a positive, continuous function on [0,∞) satisfying 1/Wa ∈
L1
loc(0,∞). By (A2) and Remark A.2.1.1,

Wa(2r) ≤ Cw(r)

(∫ 2r

0

1

w(ρ)
dρ+ 1

)a

≤ C(C0 + 1)a+Wa(r),

where a+ = max(a, 0). It remains to prove that Wa satisfies (A1); For any a, b ∈ R, there exists Ca,b

such that for any r and R with 0 ≤ r ≤ R,

Wa(r)

(∫ r

0

1

Wa(ρ)
dρ+ 1

)b

≤ Ca,bWa(R)

(∫ R

0

1

Wa(ρ)
dρ+ 1

)b

holds. Let 0 ≤ r ≤ R. We note that (A1) property of w is equivalent to Wa(r) ≤ CaWa(R). We
distinguish three cases:

(i) b ≥ 0. (ii) b < 0, a ≥ 0. (iii) b < 0, a < 0.

(i) In the case where b ≥ 0, we estimate

Wa(r)

(∫ r

0

1

Wa(ρ)
dρ+ 1

)b

≤ CaWa(R)

(∫ r

0

1

Wa(ρ)
dρ+ 1

)b

≤ CaWa(R)

(∫ R

0

1

Wa(ρ)
dρ+ 1

)b

,

as required.

(ii) In the case where b < 0, a ≥ 0, we first notice that

1

Wa(R)

(∫ R

0

1

Wa(ρ)
dρ+ 1

)|b|

=
1

Wa(R)

(∫ r

0

1

Wa(ρ)
dρ+

∫ R

r

1

Wa(ρ)
dρ+ 1

)|b|

≤ 2(|b|−1)+

Wa(R)

((∫ r

0

1

Wa(ρ)
dρ+ 1

)|b|

+

(∫ R

r

1

Wa(ρ)
dρ

)|b|)

≤ Ca2
(|b|−1)+

Wa(r)

(∫ r

0

1

Wa(ρ)
dρ+ 1

)|b|

+
2(|b|−1)+

Wa(R)

(∫ R

r

1

Wa(ρ)
dρ

)|b|

. (A.2.2.1)



A.2.2. A Basic Property of F 73

To estimate the second term on the right hand side of the last inequality of (A.2.2.1), we remark that

∫ R

r

1

Wa(ρ)
dρ =

∫ R

r

1

w(ρ)

(∫ ρ

0

1

w(σ)
dσ + 1

)−a

dρ

≤
∫ R

r

1

w(ρ)

(∫ r

0

1

w(σ)
dσ + 1

)−a

dρ

≤

(∫ r

0

1

w(σ)
dσ + 1

)−a ∫ R

0

1

w(ρ)
dρ

and

1

Wa(R)
=

1

w(R)

(∫ R

0

1

w(ρ)
dρ+ 1

)−a

≤ 1

w(R)

(∫ r

0

1

w(ρ)
dρ+ 1

)−a

.

Therefore,

1

Wa(R)

(∫ R

r

1

Wa(ρ)
dρ

)|b|

≤ 1

w(R)

(∫ r

0

1

w(ρ)
dρ+ 1

)−a−a|b|(∫ R

0

1

w(ρ)
dρ

)|b|

≤

(∫ r

0

1

w(ρ)
dρ+ 1

)−a−a|b|
1

w(R)

(∫ R

0

1

w(ρ)
dρ+ 1

)|b|

≤

(∫ r

0

1

w(ρ)
dρ+ 1

)−a−a|b|

· Cb
1

w(r)

(∫ r

0

1

w(ρ)
dρ+ 1

)|b|

≤ Cb
1

w(r)
( ∫ r

0
1

w(ρ)dρ+ 1
)a ·

(∫ r

0

1

w(ρ)
( ∫ r

0
1

w(σ)dσ + 1
)a dρ+ 1

)|b|

≤ Cb
1

Wa(r)

(∫ r

0

1

Wa(ρ)
dρ+ 1

)|b|

. (A.2.2.2)

Combining (A.2.2.1) and (A.2.2.2) and taking the inverse of the resulting inequality, we find that Wa

satisfies (A1).

(iii) In the case where b < 0, a < 0, we use the equality

∫ r

0

1

Wa(ρ)
dρ+ 1 =

1

|a|+ 1

(∫ r

0

1

w(ρ)
dρ+ 1

)|a|+1

+
|a|

|a|+ 1
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to estimate

Wa(r)

(∫ r

0

1

Wa(ρ)
dρ+ 1

)b

≤ 1

(|a|+ 1)b
w(r)

(∫ r

0

1

w(ρ)
+ 1

)a+(|a|+1)b

≤ (|a|+ 1)|b|Ca+b−abw(R)

(∫ R

0

1

w(ρ)
dρ+ 1

)a+b−ab

= (|a|+ 1)|b|Ca+b−abWa(R)

(∫ R

0

1

w(ρ)
dρ+ 1

)(|a|+1)b

≤ (|a|+ 1)|b|Ca+b−abWa(R)

(∫ R

0

1

Wa(ρ)
dρ+ 1

)b

,

as required. Q.E.D.

A.2.3 Infinitely Iterated Logarithm

In this section, we introduce arbitrarily and infinitely iterated logarithm functions in connection with
class F. The definition is different from that of [1] in the sense that convergence factors are introduced
in terms of the parameter θ ∈ (0, 1].

Definition A.2.3.1. Let 0 < θ ≤ 1. For non-negative integers n, the following functions lθ,n : [0,∞) →
R are defined successively by:

lθ,0(r) = 1 + r,

lθ,k(r) = 1 + θ log lθ,k−1(r), k ≥ 1.

Moreover, we define Lθ,k : [0,∞) → R by

Lθ,k(r) =

k∏
j=0

lθ,j(r).

Remark A.2.3.2. For any k ≥ 0, lθ,k(0) = Lθ,k(0) = 1. Moreover, lθ,k(r) ≥ 1 and Lθ,k(r) ≥ 1 for all
r ≥ 0 since lθ,k and Lθ,k are increasing functions. Explicitly, the derivative l′θ,k is given by

l′θ,k(r) = θk · 1

Lθ,k−1(r)
, r ≥ 0.

By a successive use of the elementary inequality log(1 + r) ≤ r for r ≥ −1,

0 ≤ log lθ,k(r) ≤ θ log lθ,k−1(r) ≤ · · · ≤ θk log lθ,0(r), r ≥ 0.

This implies that for any θ with 0 < θ < 1, the series

∞∑
k=0

log lθ,k(r) converges with estimates

0 ≤
∞∑
k=0

log lθ,k(r) ≤
1

1− θ
log lθ,0(r), r ≥ 0.
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Definition A.2.3.3. For any θ with 0 < θ < 1, Lθ is defined by

Lθ(r) =

∞∏
k=0

lθ,k(r), r ≥ 0.

Remark A.2.3.4. By Remark A.2.3.2, if 0 < θ < 1, Lθ converges with estimates

1 ≤ Lθ(r) ≤ (1 + r)1/(1−θ), r ≥ 0.

If θ = 1 and r > 0, we prove that L1(r) = ∞ by contradiction. Assume that L1(r) <∞. Then, for any
k we have

logL1(r) ≥ logL1,k(r)

=

∫ r

0

d

dρ

( k∑
j=0

log l1,j(ρ)

)
dρ

=

∫ r

0

k∑
j=0

1

L1,j(ρ)
dρ

≥
∫ r

0

k∑
j=0

1

L1,k(r)
dρ = r

k∑
j=0

1

L1,k(r)
≥ (k + 1)r

L1(r)
,

which yields a contradiction for k sufficiently large.

The main theorem in this section now reads:

Theorem A.2.3.1. For any θ with 0 < θ < 1, Lθ ∈ F. Moreover,∫ ∞

0

1

Lθ(r)
dr = ∞. (A.2.3.1)

To prove Theorem A.2.3.1, we introduce some preliminary propositions. From now on, θ denotes a
real number with 0 < θ < 1 without particular comments.

Lemma A.2.3.1. For any a ∈ R, there exists Cθ,a ≥ 1 such that for any r and R with 0 ≤ r ≤ R

(1 + r)

(∫ r

0

1

Lθ(ρ)
dρ+ 1

)a

≤ Cθ,a(1 +R)

(∫ R

0

1

Lθ(ρ)
dρ+ 1

)a

(A.2.3.2)

holds.

proof. For a ≥ 0, (A.2.3.2) holds with Ca = 1 by monotonicity. Let a < 0 and let mθ be defined by

mθ(r) =

∫ r

0

1

Lθ(ρ)
dρ+ 1.

Then,

m′
θ(R) =

1

Lθ(R)
≤ mθ(r)

lθ,1(R)lθ,0(R)
≤ mθ(r)

θlθ,1(r)
l′θ,1(R). (A.2.3.3)
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By (A.2.3.3), we have

mθ(R) = mθ(r) +

∫ R

r

m′
θ(ρ)dρ

≤ mθ(r) +
mθ(r)

θlθ,1(r)

∫ R

r

l′θ,1(ρ)dρ

= mθ(r) +
mθ(r)

θlθ,1(r)

(
lθ,1(R)− lθ,1(r)

)
≤ mθ(r)

θlθ,1(r)
lθ,1(R). (A.2.3.4)

By Remark A.2.3.2 and (A.2.3.4), we obtain

(1 + r)mθ(r)
a =

(
mθ(r)

lθ,1(r)

)a

(1 + r)
(
lθ,1(r)

)a
≤ C

(
mθ(r)

lθ,1(r)

)a

(1 +R)
(
lθ,1(R)

)a
≤ Cθa(1 +R)mθ(R)

a

with some constant C, as required. Q.E.D.

Lemma A.2.3.2. For any r, s ≥ 0,

Lθ(lθ,0(s)r) ≤ Lθ(s)Lθ(r). (A.2.3.5)

proof. It is sufficient to prove that

lθ,k(lθ,0(s)r) ≤ lθ,k(s)lθ,k(r) (A.2.3.6)k

by induction on k ≥ 0. For k = 0,

lθ,0(lθ,0(s)r) = 1 + lθ,0(s)r = 1 + (1 + s)r ≤ (1 + s)(1 + r) = lθ,0(s)lθ,0(r)

Let k ≥ 1 and assume (A.2.3.6)k−1. Then,

lθ,k(lθ,0(s)r) = 1 + θ log
(
lθ,k−1(lθ,0(s)r)

)
≤ 1 + θ log

(
lθ,k−1(s)lθ,k−1(r)

)
≤
(
1 + θ log lθ,k−1(s)

)(
1 + θ log lθ,k−1(r)

)
≤ lθ,k(s)lθ,k(r),

which completes the induction argument. Q.E.D.

Lemma A.2.3.3. For any non-negative integers k and j, lθ,k+j is represented by lθ,k and lθ,j as

lθ,k+j(r) = lθ,j

(
lθ,k(r)− 1

)
(A.2.3.7)

for all r ≥ 0.
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proof. We prove (A.2.3.7) by induction on j. For j = 0, we have

lθ,k(r) = lθ,0

(
lθ,k(r)− 1

)
for all k ≥ 0 by definition. Let j ≥ 1 and assume that

lθ,k+j−1(r) = lθ,j−1

(
lθ,k(r)− 1

)
holds for all k ≥ 0 and r ≥ 0. Then,

lθ,k+j(r) = 1 + θ log
(
lθ,k+j−1(r)

)
= 1 + θ log

(
lθ,j−1(lθ,k(r)− 1)

)
= lθ,j

(
lθ,k(r)− 1

)
for all k ≥ 0 and r ≥ 0. This completes the induction argument. Q.E.D.

Proof of Theorem A.2.3.1. Let r, R satisfy 0 ≤ r ≤ R. Then, by Lemma A.2.3.1,

Lθ(r)

(∫ r

0

1

Lθ(ρ)
dρ+ 1

)a

≤ (1 + r)

( ∞∏
k=1

lθ,k(R)

)(∫ r

0

1

Lθ(ρ)
dρ+ 1

)a

≤ Cθ,aLθ(R)

(∫ R

0

1

Lθ(ρ)
dρ+ 1

)a

.

Moreover, since lθ,0(1) = 2, we apply (A.2.3.5) with s = 1 to obtain

Lθ(2r) ≤ Lθ(1)Lθ(r).

Therefore, Lθ ∈ F. We prove (A.2.3.1). It suffices to prove that there exists a sequence {rk; k ≥ 0} of
positive numbers such that ∫ rk

0

1

Lθ(ρ)
dρ→ ∞

as k → ∞. Let r0 = 1. Then, for any k ≥ 1 there exists a unique rk > 0 such that lθ,k(rk) = lθ,0(r0) = 2
since lθ,k is an increasing function with lθ,k(0) = 1 and limr→∞ lθ,k(r) = ∞. Let 0 ≤ ρ ≤ rk. By Lemma
A.2.3.3,

Lθ(ρ) = Lθ,k−1(ρ)

∞∏
j=0

lθ,k+j(ρ)

≤ Lθ,k−1(ρ)

∞∏
j=0

lθ,k+j(rk)

= Lθ,k−1(ρ)

∞∏
j=0

lθ,j

(
lθ,k(rk)− 1

)
= Lθ,k−1(ρ)Lθ

(
lθ,k(rk)− 1

)
= Lθ,k−1(ρ)Lθ

(
lθ,0(r0)− 1

)
= Lθ,k−1(ρ)Lθ(1). (A.2.3.8)
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By (A.2.3.7) and (A.2.3.8), ∫ rk

0

1

Lθ(ρ)
dρ ≥ 1

Lθ(1)

∫ rk

0

1

Lθ,k−1(ρ)
dρ

=
1

Lθ(1)

1

θk

(
lθ,k(rk)− 1

)
=

1

Lθ(1)

1

θk
→ ∞

as k → ∞, as required. Q.E.D.

A.2.4 Optimality of Theorems A.2.1.2 and A.2.1.3.

In this section, we consider optimality of Theorems A.2.1.2 and A.2.1.3. To this end, we divide weight
functions w ∈ F into two cases:

I :

∫ ∞

0

1

w(r)
dr <∞. II :

∫ ∞

0

1

w(r)
dr = ∞.

Theorem A.2.4.1. Let 2 ≤ p < ∞ and let w ∈ F. Let w0, w1, w2 be as in Theorem A.2.1.2 with a,
b, c ∈ R.

(1) In the case I, the trilinear estimate in Theorem A.2.1.2 holds for any a, b, c ∈ R.

(2) In the case II, let a, b, c satisfy one of the conditions (iii), (iv), (v), (vi):

(iii) a+ b+ c < 1/p. (iv) a+ b < 0. (v) a+ c < 0.

(vi) a+ b+ c = 1/p and “a+ b = 0 or a+ c = 0”.

Then, the trilinear estimate in Theorem A.2.1.2 fails for some f ∈ Lp(Rn), g, h ∈ Lp′
(Rn).

Remark A.2.4.1. The conditions (iii), (iv), (v), and (vi) in Theorem A.2.4.1 consist of the negation
of the condition “(i) or (ii)” in Theorem A.2.1.2.

proof. In the case I, we easily see the trilinear estimate holds with any a, b, and c. To give a counter
example for the trilinear estimate in the case II, we divide the proof into three cases:

(i) a+ b+ c < 1/p. (ii) a+ b < 0 or a+ c < 0.

(iii) a+ b+ c = 1/p and “a+ b = 0 or a+ c = 0”.

(i) In the case where a+ b+ c < 1/p, let δ > 0 satisfy δ ̸= 1/p− c and let

f(x) = (1 + |x|)−(n−1)/pw(|x|)−1/p

(∫ |x|

0

1

w(ρ)
dρ+ 1

)−1/p−δ

,

g(x) = h(x) = (1 + |x|)−(n−1)/p′
w(|x|)−1/p′

(∫ |x|

0

1

w(ρ)
dρ+ 1

)−1/p′−δ

.
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Then, f ∈ Lp(Rn) and g, h ∈ Lp′
(Rn). For any x ∈ Rn with |x| ≥ 2,

∫
1≤|y|≤|x|/2

w0(|x+ y|)f(x+ y)w2(|y|)h(y)dy

=

∫
1≤|y|≤|x|/2

(∫ |x+y|

0

1

w(ρ)
dρ+ 1

)−1/p−a−δ

· (1 + |y|)−(n−1) 1

w(|y|)

(∫ |y|

0

1

w(ρ)
dρ+ 1

)−1/p′−c−δ

dy. (A.2.4.1)

By (A1), if 1/p+ a+ δ ≥ 0, then for any y ∈ Rn with 0 ≤ |y| ≤ |x|/2,

(∫ |x+y|

0

1

w(ρ)
dρ+ 1

)−1/p−a−δ

≥
(∫ 3|x|/2

0

1

w(ρ)
dρ+ 1

)−1/p−a−δ

=

(
3

2

∫ |x|

0

1

w(3ρ/2)
dρ+ 1

)−1/p−a−δ

≥
(
3C0

2

∫ |x|

0

1

w(ρ)
dρ+ 1

)−1/p−a−δ

≥
(
3C0

2
+ 1

)−1/p−a−δ(∫ |x|

0

1

w(ρ)
dρ+ 1

)−1/p−a−δ

. (A.2.4.2)

Similarly, if 1/p+ a+ δ < 0, then for any y ∈ Rn with 0 ≤ |y| ≤ |x|/2,

(∫ |x+y|

0

1

w(ρ)
dρ+ 1

)−1/p−a−δ

≥
(∫ |x|/2

0

1

w(ρ)
dρ+ 1

)−1/p−a−δ

=

(
1

2

∫ |x|

0

1

w(ρ/2)
dρ+ 1

)−1/p−a−δ

≥
(

1

2C0

∫ |x|

0

1

w(ρ)
dρ+ 1

)−1/p−a−δ

≥ (2C0)
1/p+a+δ

(∫ |x|

0

1

w(ρ)
dρ+ 1

)−1/p−a−δ

. (A.2.4.3)
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In addition, if 1/p− c− δ ≥ 0, then for any x ∈ Rn with |x| ≥ 4,

∫
1≤|y|≤|x|/2

(1 + |y|)−(n−1) 1

w(|y|)

(∫ |y|

0

1

w(ρ)
dρ+ 1

)−1/p′−c−δ

dy

= ωn−1

∫ |x|/2

1

(
r

1 + r

)n−1
1

w(r)

(∫ r

0

1

w(ρ)
dρ+ 1

)−1/p′−c−δ

dr

≥ 21−nωn−1

1/p− c− δ

((∫ |x|/2

0

1

w(r)
dr + 1

)1/p−c−δ

−
(∫ 1

0

1

w(r)
dr + 1

)1/p−c−δ
)

≥ 21−nωn−1

1/p− c− δ

(
1−

(∫ 2

0

1

w(r)
dr + 1

)−1/p+c+δ
)

·
(∫ |x|/2

0

1

w(r)
dr + 1

)1/p−c−δ

=
21−nωn−1

1/p− c− δ

(
1−

(∫ 2

0

1

w(r)
dr + 1

)−1/p+c+δ
)

·
(
1

2

∫ |x|

0

1

w(r/2)
dr + 1

)1/p−c−δ

≥ 21/p
′−c−δ−nωn−1

(1/p− c− δ)C
1/p−c−δ
0

(
1−

(∫ 2

0

1

w(r)
dr + 1

)−1/p+c+δ
)

·
(∫ |x|

0

1

w(r)
dr + 1

)1/p−c−δ

. (A.2.4.4)

If 1/p− c− δ < 0, then

∫
1≤|y|≤|x|/2

(1 + |y|)−(n−1) 1

w(|y|)

(∫ |y|

0

1

w(ρ)
dρ+ 1

)−1/p′−c−δ

dy

=
21−nωn−1

1/p− c− δ

((∫ 1

0

1

w(r)
dr + 1

)1/p−c−δ

−
(∫ |x|/2

0

1

w(r)
dr + 1

)1/p−c−δ
)

≥ 21−nωn

1/p− c− δ

((∫ 1

0

1

w(r)
dr + 1

)1/p−c−δ

−
(∫ 2

0

1

w(r)
dr + 1

)1/p−c−δ
)

·
(∫ |x|

0

1

w(r)
dr + 1

)1/p−c−δ

. (A.2.4.5)

By (A.2.4.1), (A.2.4.2), (A.2.4.3), (A.2.4.4), and (A.2.4.5), there exists a positive constant C such that
for any x ∈ Rn with |x| ≥ 4 ∫

1≤|y|≤|x|/2
w0(|x+ y|)f(x+ y)w2(|y|)h(y)dy

≥ C

(∫ |x|

0

1

w(ρ)
dρ+ 1

)−a−c−2δ

. (A.2.4.6)
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Finally by (A.2.4.6), we have

∫∫
w0(|x+ y|)w1(|x|)w2(|y|)|f(x+ y)g(x)h(y)| dx dy

≥ C

∫
|x|≥4

(|x|+ 1)−(n−1) 1

w(|x|)

(∫ |x|

0

1

w(ρ)
dρ+ 1

)−1/p′−a−b−c−3δ

dx

≥ Cωn

(
4

5

)n−1 ∫ ∞

4

1

w(r)

(∫ |x|

0

1

w(ρ)
dρ+ 1

)−1/p′−a−b−c−3δ

dr

≥ Cωn

(
4

5

)n−1
(
log

(∫ ∞

0

1

w(ρ)
dρ+ 1

)
− log

(∫ 4

0

1

w(ρ)
dρ+ 1

))
= ∞

with δ ≤ (1/p− a− b− c)/3.

(ii) In the case where a+ b < 0 or a+ c < 0, by symmetry, it is sufficient to give a counter example only
in the case where a+ b < 0. Let f and g be as in the case (iii) with δ ≤ −(a+ b)/2 and a+1/p+ δ ̸= 1.
Let

h(x) = χB(1)(x)
1

w2(|x|)
.

Then, by (A.2.1.15), (A.2.4.4), and (A.2.4.5),

∫∫
Rn×Rn

w0(|x+ y|)w1(|x|)w2(|y|)f(x+ y)g(x)h(y) dy dx

≥
∫
|x|≥2

∫
|y|≤1

(∫ |x+y|

0

1

w(ρ)
dρ+ 1

)−a−1/p−δ

dy

· (1 + |x|)n−1 1

w(|x|)

(∫ |x|

0

1

w(ρ)
dρ+ 1

)−b−1/p′−δ

dx

≥ C

∫ ∞

2

1

w(r)

(∫ r

0

1

w(ρ)
dρ+ 1

)−a−b−1−2δ

dr

≥ C

∫ ∞

2

1

w(r)

(∫ r

0

1

w(ρ)
dρ+ 1

)−1

dr

≥ C

(
log

(∫ ∞

0

1

w(ρ)
dρ+ 1

)
− log

(∫ 2

0

1

w(ρ)
dρ+ 1

))
= ∞

with some positive constant C, as required.

(iii) In the case where a+ b+ c = 1/p and a+ b = 0 or a+ b = c, by symmetry, it is sufficient to give a
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counter example in the case where a+ b = 0. Let

J(r) =

∫ r

0

1

w(ρ)

(∫ ρ

0

1

w(σ)
dσ + 1

)−1

dρ+ 1,

f(x) = (1 + |x|)−(n−1)/pw(|x|)−1/p

(∫ |x|

0

1

w(ρ)
dρ+ 1

)−1/p

J(|x|)−1/p−δ,

g(x) = h(x)

= (1 + |x|)−(n−1)/p′
w(|x|)−1/p′

(∫ |x|

0

1

w(ρ)
dρ+ 1

)−1/p′

J(|x|)−1/p′−δ

for δ > 0. By (A1),

J(2r) =

∫ 2r

0

1

w(ρ)

(∫ ρ

0

1

w(σ)
dσ + 1

)−1

dρ+ 1

≤
∫ r

0

1

w(ρ)

(∫ ρ

0

1

w(σ)
dσ + 1

)−1

dρ+ 1

+

∫ r

0

1

w(r + ρ)

(∫ ρ

0

1

w(σ)
dσ + 1

)−1

dρ+ 1

≤ (1 + C0)J(r). (A.2.4.7)

In addition, with any k ≥ 0 let rk > 0 satisfy

∫ rk

0

1

w(ρ)
dρ = 2k − 1,

where rk is determined uniquely, since
∫ r

0
1/w(ρ)dρ is a monotone increasing function of r. Then, we

estimate

J(rk) =

k∑
j=1

∫ rj

rj−1

1

w(ρ)

(∫ ρ

0

1

w(σ)
dσ + 1

)−1

dρ

≥
k∑

j=1

(∫ rj

0

1

w(σ)
dσ + 1

)−1
(∫ rj

0

1

w(ρ)
dρ−

∫ rj−1

0

1

w(ρ)
dρ

)

=

k∑
j=1

2−j(2j − 2j−1) =
k

2
. (A.2.4.8)

This shows limr→∞ J(r) = ∞. By (A.2.4.4), (A.2.4.5), and (A.2.4.7), for any x ∈ Rn with |x| ≥ 4 and
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0 < δ < 1/p ∫
1≤|y|≤|x|/2

w0(|x+ y|)f(x+ y)w2(|y|)h(y)dy

=

∫
1≤|y|≤|x|/2

(∫ |x+y|

0

1

w(ρ)
dρ+ 1

)−1/p−a

J(|x+ y|)−1/p−δ

· (1 + |y|)−(n−1) 1

w(|y|)

(∫ |y|

0

1

w(ρ)
dρ+ 1

)−1

J(|y|)−1/p′−δdy

≥ C

(∫ |x|

0

1

w(ρ)
dρ+ 1

)−1/p−a

J(2|x|)−1/p−δ

·
∫ |x|/2

1

1

w(r)

(∫ r

0

1

w(ρ)
dρ+ 1

)−1

J(r)−1/p′−δdr

≥ C(1 + C0)
−1/p−δ 1

1/p− δ

(∫ |x|

0

1

w(ρ)
dρ+ 1

)−1/p−a

J(|x|)−1/p−δ

·
(
J(|x|)1/p−δ − J(1)1/p−δ

)
≥ C(1 + C0)

−1/p−δ 1

1/p− δ

(
1− J(2)δ−1/p

)(∫ |x|

0

1

w(ρ)
dρ+ 1

)−1/p−a

· J(|x|)−2δ (A.2.4.9)

with some positive constant C. Then, by (A.2.4.9) and (A.2.4.8), for 0 < δ ≤ 1/(3p), we estimate∫∫
Rn×Rn

w0(|x+ y|)w1(|x|)w2(|y|)f(x+ y)g(x)h(y) dy dx

≥
∫
|x|≥4

∫
1≤|y|≤|x|/2

w0(|x+ y|)w1(|x|)w2(|y|)f(x+ y)g(x)h(y) dy dx

≥ C(1 + C0)
−1/p−δ 1

1/p− δ

(
1− J(2)δ−1/p

)
·
∫ ∞

4

1

w(r)

(∫ r

0

1

w(ρ)
dρ+ 1

)−1

J(|x|)−1/p′−3δdr

≥ C(1 + C0)
−1/p−δ 1

1/p− δ

(
1− J(2)δ−1/p

)(
lim
r→∞

log J(r)− log J(4)
)

= ∞,

as required. Q.E.D.

Theorem A.2.4.2. Let w ∈ F and let w0, w1, w2 be as in Theorem A.2.1.2 with a, b, c ∈ R.

(1) In the case I, the trilinear estimate in Theorem A.2.1.2 holds for any a, b, c ∈ R

(2) In the case II, let a, b, c satisfy either (iii) or (iv) or (v) in Theorem A.2.4.1, then the trilinear
estimate in Theorem A.2.1.2 fails for some f ∈ L∞(Rn), g, h ∈ L1(Rn).

(3) In the case II, let a = b = c = 0. Then, the trilinear estimates holds.
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proof. The proofs of (1) and (2) are the same as in the proof of Theorem A.2.4.1, while (3) follows
from the Hölder and Young inequalities as below:∫∫

Rn×Rn

w0(|x+ y|)w1(|x|)w2(|y|)|f(x+ y)g(x)h(y)| dx dy

≤
∫∫

Rn×Rn

|f(x+ y)g(x)h(y)| dx dy

=

∫∫
Rn×Rn

|f(x)g(x− y)h(y)| dy dx

≤ ∥f∥L∞(Rn)∥g ∗ h∥L1(Rn)

≤ ∥f∥L∞(Rn)∥g∥L1(Rn)∥h∥L1(Rn).

Q.E.D.



Chapter A.3

Study of Fractional Leibniz Rule

A.3.1 Introduction

Here, we revisit Lemma 1.3.11 with −a = b = c = s from the view point of the remainder of main
contribution.

One of the most important tools to obtain local well-posedness of nonlinear equations of mathematical
physics is based on the bilinear estimate of the form

∥Ds(fg)∥Lp(Rn) ≤ C∥Dsf∥Lp1 (Rn)∥g∥Lp2 (Rn) + C∥f∥Lp3∥Dsg∥Lp4 (Rn), (A.3.1.1)

where Ds = (−∆)s/2 is the standard Riesz potential of order s ∈ R and f, g ∈ S(Rn). A typical domain
for parameters s, p, pj , j = 1, · · · , 4, where (A.3.1.1) is valid is

s > 0, 1 < p, p1, p2, p3, p4 <∞,
1

p
=

1

p1
+

1

p2
=

1

p3
+

1

p4
.

Classical proof can be found in [44]. The estimate can be considered as natural homogeneous version of
the non-homogeneous inequality of type (A.3.1.1) involving Bessel potentials (1−∆)s/2 in the place of
Ds, obtained by Kato and Ponce in [57] ( for this the estimates of type (A.3.1.1) are called Kato-Ponce
estimates, too). More general domain for parameters can be found in [41].

Another estimate showing the flexibility in the redistribution of fractional derivatives can be deduced
when 0 < s < 1. More precisely, Kenig, Ponce, and Vega [58] obtained the estimate

∥Ds(fg)− fDsg − gDsf∥Lp(Rn) ≤ C∥Ds1f∥Lp1 (Rn)∥Ds2g∥Lp2 (Rn), (A.3.1.2)

provided
0 < s = s1 + s2 < 1, s1, s2 ≥ 0,

and

1 < p, p1, p2 <∞,
1

p
=

1

p1
+

1

p2
. (A.3.1.3)

One can interpret the bilinear form

Cors(f, g) = fDsg + gDsf

as a correction term such that for any redistribution of the order s of the derivatives, i.e. for any
s1, s2 ≥ 0, such that s1 + s2 = s, we have

∥Ds(fg)− Cors(f, g)∥Lp(Rn) ≤ C∥Ds1f∥Lp1 (Rn)∥Ds2g∥Lp2 (Rn), (A.3.1.4)

85
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i.e., we have flexible redistribution of the derivatives of the remainder Ds(fg)− Cors(f, g).
Estimates of the form (A.3.1.2) are of interest on their own in harmonic analysis [4, 5, 7, 12, 19,

25, 40, 42, 43, 44, 45, 57, 75, 91] as well as in applications to nonlinear partial differential equations
[8, 23, 27, 47, 58, 61, 68, 80, 82]. Our goal is to generalize (A.3.1.2) in the case where s ≥ 1. In fact, for
s = 2, we have D2 = −∆ and

D2(fg)− fD2g − gD2f + 2∇f · ∇g = 0.

This means that we could expect (A.3.1.4) with appropriate correction terms in a general setting.
Typically, one can use paraproduct decomposition and reduce the proof of (A.3.1.4) separating

different frequency domains for the supports of f̂ and ĝ. In the case, when f̂ is localized in low-
frequency domain and ĝ is localized in high-frequency domain, the estimate (A.3.1.4) can be derived
from the commutator estimate

∥[Ds, f ]g∥Lp(Rn) ≤ C∥Ds1f∥Lp1 (Rn)∥Ds2g∥Lp2 (Rn),

where the assumption s ≤ 1 plays a crucial role. More precisely, if we assume

supp f̂ ⊂ {ξ ∈ Rn; |ξ| ≤ 2k−2}, supp ĝ ⊂ {ξ ∈ Rn; 2k−1 ≤ |ξ| ≤ 2k+1}, (A.3.1.5)

then we can use the relation
[Ds, f ]g(x) = As(Df,D

s−1g)(x),

where

As(F,G)(x) =

∫
Rn

∫
Rn

eix(ξ+η)as(ξ, η)F̂ (ξ)Ĝ(η)dξdη

is a Coifman-Meyer type bilinear operator with a symbol as(ξ, η) of Coifman-Meyer class supported in
the cone

Γ = {(ξ, η) ∈ Rn × Rn; 0 < |ξ| ≤ |η|/2}, (A.3.1.6)

Recall the definition of Coifman-Meyer class:

Definition A.3.1.1. We say that a symbol

σ ∈ C∞(Rn \ {0})

belongs to the Hörmander class S0, if for all multi-indices α ∈ Nn
0 , N0 = N ∪ {0}, we have

|∂αξ σ(ξ)| ≤ Cα|ξ|−|α|, ∀ξ ̸= 0.

We say that a bilinear symbol
a ∈ C∞((Rn × Rn) \ {(0, 0)})

belongs to the Coifman-Meyer (CM) class, if

|∂αξ ∂βη a(ξ, η)| ≤ Cα,β(|ξ|+ |η|)−|α|−|β|.

for all multi-indices α, β : |α|+ |β| < mn, where mn depends on the dimension only.

It is well-known that operators with symbols in S0 give rise to bounded operators on Lp(Rn) : 1 <
p <∞ spaces. The result of Coifman and Meyer (see [24, 26, 38, 59]) generalizes this result to bilinear
symbols. Namely, it states that bilinear operators

A(F,G)(x) =

∫
Rn

∫
Rn

eix(ξ+η)a(ξ, η)F̂ (ξ)Ĝ(η)dξdη
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with symbols in the CM class satisfy

∥A(F,G)∥Lp(Rn) ≤ Cp,p1,p2
∥F∥Lp1 (Rn)∥G∥Lp2 (Rn) (A.3.1.7)

for all 1 < p, p1, p2 <∞ and 1/p = 1/p1 + 1/p2.

Applying Coifman-Meyer bilinear estimate for As we can deduce the following estimate

Lemma A.3.1.1. Suppose f, g satisfy the assumptions (A.3.1.5) and p, p1, p2 satisfy 1 < p, p1, p2 <∞
and 1/p = 1/p1 + 1/p2. Then for any s ≥ 0 we have

∥[Ds, f ]g∥Lp(Rn) ≤ C∥D1f∥Lp1 (Rn)∥Ds−1g∥Lp2 (Rn). (A.3.1.8)

This estimate and the assumptions (A.3.1.5) explains the possibility to redistribute the fractional
derivatives. Namely, if f and g satisfy (A.3.1.5), we have the possibility to replace the right hand side
of (A.3.1.8) by C∥Ds1f∥Lp1 (Rn)∥Ds2g∥Lp2 (Rn) for any couple (s1, s2) of non-negative real numbers with
0 < s1 + s2 = s < 1.

Our main goal is to study a similar effect of arbitrary redistribution of fractional derivatives for s ≥ 2
in the scale of Lebesgue and Triebel-Lizorkin spaces in Rn.

First, we shall try to explain the correction term in (A.3.1.4), such that estimate of type

∥[Ds, f ]g − Cors(f, g)∥Lp(Rn) ≤ C∥D2f∥Lp1 (Rn)∥Ds−2g∥Lp2 (Rn)

will be fulfilled.

Let as(ξ, η, θ) = |η + θξ|s. We also define

Am
s (θ)(f, g) =

∫
Rn

∫
Rn

eix(ξ+η) 1

m!
∂mθ as(ξ, η, θ)f̂(ξ)ĝ(η)dξdη, (A.3.1.9)

Ãα
s (θ)(f, g) =

∫
Rn

∫
Rn

eix(ξ+η) α!

|α|!
∂αη as(ξ, η, θ)f̂(ξ)ĝ(η)dξdη.

Then A0
s(1)(f, g) = Ds(fg), A0

s(0)(f, g) = fDsg, and A1
s(0)(f, g) = s∇f ·Ds−2∇g. Moreover, we have

the following estimate:

Lemma A.3.1.2. For any multi-indices α, β one can find a constant C > 0 so that for

(ξ, η) ∈ Γ = {(ξ, η) ∈ Rn × Rn; 0 < |ξ| ≤ |η|/2},

one has the estimate

sup
0≤θ≤1

|∂αξ ∂βη as(ξ, η, θ)| ≤ C|η|s−|α|−|β|.

Lemma A.3.1.2 and the Coifman-Meyer estimate show that for any f, g ∈ S which satisfy (A.3.1.5),

∥Ãα
s (f, g)∥Lp(Rn) ≤ C∥f∥Lp1 (Rn)∥Ds−|α|g∥Lp2 (Rn).

Since

∂mθ as(ξ, η, θ) =
∑

|α|=m

α! ∂αη as(ξ, η, θ)ξ
α,
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we have for any f, g ∈ S which satisfy (A.3.1.5),

∥[Ds, f ]g∥Lp(Rn) = ∥A0
s(1)(f, g)−A0

s(0)(f, g)∥Lp(Rn) (A.3.1.10)

≤
∫ 1

0

∥A1
s(θ)(f, g)∥Lp(Rn)dθ

≤
∑
|α|=1

∫ 1

0

∥Ãα
s (θ)(∂

αf, g)∥Lp(Rn)dθ

≤ C∥Df∥Lp1 (Rn)∥Ds−1g∥Lp2 (Rn),

∥[Ds, f ]g − s∇f ·Ds−2∇g∥Lp(Rn) = ∥A0
s(1)(f, g)−A0

s(0)(f, g)−A1
s(0)(f, g)∥Lp(Rn) (A.3.1.11)

≤
∫ 1

0

∥A2
s(θ)(f, g)∥Lp(Rn)dθ

≤
∑
|α|=2

∫ 1

0

∥Ãα
s (θ)(∂

αf, g)∥Lp(Rn)dθ

≤ C∥D2f∥Lp1 (Rn)∥Ds−2g∥Lp2 (Rn).

These estimates and the assumptions (A.3.1.5) explain the redistribution the fractional derivatives,
since we have the possibility to replace the right hand sides of the last inequalities of (A.3.1.10) and
(A.3.1.11) by C∥Ds1f∥Lp1 (Rn)∥Ds2g∥Lp2 (Rn) and C∥Ds1f∥Lp1 (Rn)∥Ds2g∥Lp2 (Rn), respectively, for any
couple (s1, s2) of non-negative real numbers with s1 + s2 = s. For details, see Lemma A.3.2.2.

To state the main results in this article, we introduce the following notation. Let Φ ∈ S be radial
function and satisfy Φ̂ ≥ 0,

supp Φ̂ ⊂ {ξ ∈ Rn; 2−1 < |ξ| < 2},
∑
j∈Z

Φ̂(2−jξ) = 1

for all ξ ∈ Rn\{0}, where Φ̂ = FΦ is the Fourier transform of Φ. We define Φj = F−1(Φ̂(2−j ·)) =

2jnΦ(2j ·), Φ̃j =
∑2

k=−2 Φj+k, and Ψj = 1−
∑

k>j Φk for j ∈ Z. For simplicity, we denote Φ̃ = Φ̃0 and
Ψ = Ψ0. For f ∈ S′, we define Pjf , P≤jf , and P>jf as

Pjf = Φj ∗ f, P≤jf = Ψj ∗ f, P>jf =

(∑
k>j

Φk

)
∗ f,

respectively, where ∗ denotes the convolution.
We are ready now to state our main results.

Theorem A.3.1.1. Let ℓ ∈ N. Let p, p1, p2 satisfy 1 < p, p1, p2 < ∞ and 1/p = 1/p1 + 1/p2. Let
s, s1, s2 satisfy 0 ≤ s1, s2 and ℓ− 1 ≤ s = s1 + s2 ≤ ℓ. Then the following bilinear estimateDs(fg)−

∑
k∈Z

ℓ−1∑
m=0

Am
s (0)(P≤k−3f, Pkg)−

∑
j∈Z

ℓ−1∑
m=0

Am
s (0)(P≤j−3g, Pjf)}


Lp(Rn)

≤ C∥Ds1f∥Lp1 (Rn)∥Ds2g∥Lp2 (Rn)

holds for all f, g ∈ S, where C is a constant depending only on n, p, p1, p2.

Moreover, we have the generalization of (A.3.1.2) and simple correction term for s ≥ 2 as a corollary
of Theorem A.3.1.1.
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Corollary A.3.1.1. Let p, p1, p2 satisfy 1 < p, p1, p2 < ∞ and 1/p = 1/p1 + 1/p2. Let s, s1, s2 satisfy
0 ≤ s1, s2 ≤ 1, and s = s1 + s2. Then the following bilinear estimate

∥Ds(fg)− fDsg − gDsf∥Lp(Rn) ≤ C∥Ds1f∥Lp1 (Rn)∥Ds2g∥Lp2 (Rn)

holds for all f, g ∈ S.

Corollary A.3.1.2. Let p, p1, p2 satisfy 1 < p, p1, p2 < ∞ and 1/p = 1/p1 + 1/p2. Let s, s1, s2 satisfy
0 ≤ s1, s2 ≤ 2 and s = s1 + s2 ≥ 2. Then the following bilinear estimate

∥Ds(fg)− fDsg − gDsf + sDs−2(∇f · ∇g)∥Lp(Rn) ≤ C∥Ds1f∥Lp1 (Rn)∥Ds2g∥Lp2 (Rn)

holds for all f, g ∈ S.

This article is organized as follows. In Section A.3.2, we collect some basic estimates and key
estimates for the commutators. In Section A.3.3, we prove Lemma A.3.1.2, Theorem A.3.1.1 and
Corollaries A.3.1.1, and A.3.1.2.

A.3.2 Preliminaries

We collect some preliminary estimates needed in the proofs of the main results. For the purpose, we
introduce some notations. Let µ(p) = max{p, (p − 1)−1}. For 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and s ∈ R, let
Ḟ s
p,q = Ḟ s

p,q(Rn) be the usual homogeneous Triebel-Lizorkin space with

∥f∥Ḟ s
p,q

= ∥(2sjPjf)∥Lp((Rn);lqj )
= ∥∥(2sjPjf)∥lqj ∥Lp(Rn).

It is well known that for s ∈ R and 1 < p <∞, Ḟ s
p,2 may be identified with Ḣs

p , where Ḣ
s
p = D−sLp(Rn)

is the usual homogeneous Sobolev space and Ḟ s
p,q is continuously embedded into Ḟ s

p,∞. We also define
the Hardy-Littlewood maximal operator by

(Mf)(x) = sup
r>0

1

|B(r)|

∫
B(r)

|f(x+ y)|dy,

where B(r) = {ξ ∈ Rn; |ξ| ≤ r}. For x = (x1, · · · , xn) ∈ Rn, we put ⟨x⟩ = (1 + |x|2)1/2, where
|x|2 = x21 + · · · + x2n. We adopt the standard multi-index notation such as ∂α = ∂α1

1 · · · ∂αn
n , where

∂m = ∂/∂xm, m = 1, · · · , n.

Lemma A.3.2.1 ([39, Theorem 5.1.2]). The estimates

µ(p)−1∥f∥Lp(Rn) ≤ ∥f∥Ḟ 0
p,2

≤ µ(p)∥f∥Lp(Rn)

hold for 1 < p <∞ and f ∈ Lp(Rn).

Lemma A.3.2.2 ([39, Theorem 2.1.10]). Let s ≥ 0. Then x · ∇DsΨ ∈ L1(Rn). The estimate

|DsP≤kf(x)| ≤ 2sk∥x · ∇DsΨ∥L1(Rn)Mf(x)

holds for any f ∈ L1
loc(Rn), k ∈ Z, and x ∈ Rn, where C depends only on n.

proof. For completeness, we give its proof here: Recall that (Ψk) and Ψ are radial Schwartz functions
satisfying

P̂≤kf(ξ) = Ψ̂k(ξ)f̂(ξ), P̂≤0f(ξ) = Ψ̂(ξ)f̂(ξ).
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Using a rescaling argument, combined with the relation

DsP≤k = DsS∗
2kP≤0S2k = 2skS∗

2kD
sP≤0S2k , S∗

2kMS2k =M,

one can reduce the proof of Lemma A.3.2.2 to the case when k = 0, where S2kf = f(2−kx) and
S∗
2kf = f(2kx). Let ρ ∈ C∞([0,∞); [0, 1]) satisfy

ρ =

⎧⎪⎨⎪⎩
1 if 0 ≤ x ≤ 1/2,

↘ if 1/2 < x < 1,

0 if x ≥ 1,

and ρR(·) = ρ(·/R) for any R > 0. Let

Fx(r) =

∫
Sn−1

f(x+ rω)dω, Gx(r) =

∫ r

0

Fx(r
′)r′n−1dr′.

Since Ψ and DsΨ are radial functions, it is useful to introduce the notation ψs(| · |) = DsΨ(·). By
integration by parts,

|DsP≤0f | = lim
R→∞

⏐⏐⏐⏐∫ f(x+ y)ρR(|y|)DsΨ(y)dy

⏐⏐⏐⏐
= lim

R→∞

⏐⏐⏐⏐⏐
∫ R

0

Fx(r)r
n−1ρR(r)ψs(r)dr

⏐⏐⏐⏐⏐
= lim

R→∞

⏐⏐⏐⏐Gx(R)ρR(R)ψs(R)  
=0

−Gx(0)ρR(0)ψs(0)  
=0

−
∫ R

0

Gx(r)
d

dr
(ρRψs)(r)dr

⏐⏐⏐⏐
≤ |Sn−1|

∫ ∞

0

rn−1

⏐⏐⏐⏐r ddrψs(r)

⏐⏐⏐⏐drMf(x)

=

∫
Rn

|x · ∇DsΨ(x)|dx Mf(x).

Q.E.D.

Remark A.3.2.1. One can show that ∥x · ∇DsΨ∥L1(Rn) is bounded as follows:∫
Rn

|x · ∇DsΨ(x)|dx =

∫
Rn

|(n+ s)DsΨ(x) +Ds∇(xΨ)(x)|dx

≤ (n+ s)∥DsΨ∥L1(Rn) + ∥Ds∇(xΨ)∥L1(Rn).

For any s ≥ 0,

∥DsΨ∥L1(Rn) ≤ C∥Ψ∥Ḃs
1,1

≤ C(∥Ψ∥Ḃ0
1,∞

+ ∥Ψ∥
Ḃ

2⌈s/2⌉
1,∞

) ≤ C∥Ψ∥
H

2⌈s/2⌉
1

,

where ⌈s⌉ = min{a ∈ Z; a ≥ s}. Moreover, since supp∇Ψ̂ ⊂ Rn\B(1), Ds∇(xΨ) ∈ S and ∥Ds∇(xΨ)∥Lp(Rn) <
∞.

Lemma A.3.2.3 ([39, Theorem 2.1.6]). Let 1 < p ≤ ∞ and f ∈ Lp(Rn). Then the estimate

∥Mf∥Lp(Rn) ≤ 3n/pp′∥f∥Lp(Rn)
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holds.

Lemma A.3.2.4 (Fefferman-Stein[32][39, Theorem 1.2]). Let (fj)j∈Z be a sequence of measurable func-
tions on Rn. Let 1 < p <∞ and 1 < q ≤ ∞. Then the estimate

∥(Mfj)∥Lp((Rn);lqj )
≤ Cnµ(p)µ(q)∥(fj)∥Lp((Rn);lqj )

holds.

Lemma A.3.2.5. Let s1, s2, s3, s4, s5 be non-negative real numbers satisfying s1+s2+s3 = s4+s5 and
let 1 < p, p1, p2 <∞ satisfy 1/p = 1/p1 + 1/p2. ThenDs1

∑
j∈Z

PjD
s2fPjD

s3g


Lp(Rn)

≤ Cpµ(p1)µ(p2)∥f∥Ḟ s4
p1,2

∥g∥Ḟ s5
p2,2

.

proof. By the Hölder and Fefferman-Stein inequalities, for any h ∈ Lp′
(Rn),⏐⏐⏐⏐ ∫

Rn

Ds1
∑
j∈Z

PjD
s2f(x)PjD

s3g(x)h(x)dx

⏐⏐⏐⏐
=
∑
j∈Z

∫
Rn

∫
Rn

|(Ds1Ψj+2(x− y)Ds2Pjf(y)D
s3Pjg(y)h(x)|dydx

≤
∫
Rn

∑
j∈Z

|Ds1Ψj+2| ∗ |h|(y)|Ds2Pjf(y)D
s3Pjg(y)|dy

≤ Cp
∥2s4jMPjf(y)∥l2j ∥2

s5jMPjg∥l2j

Lp(Rn)

∥h∥Lp′ (Rn)

≤ Cpµ(p1)µ(p2)∥h∥Lp′ (Rn)∥f∥Ḟ s1
p1,2

∥g∥Ḟ s2
p2,2

.

Q.E.D.

Recall the definition of the Hörmander class Ss.

Definition A.3.2.2. Let s ∈ R. We say that a symbol

σ ∈ C∞(Rn \ {0})

belongs to the Hörmander class Ss, if for all multi-indices α, we have

|∂αξ σ(ξ)| ≤ Cα|ξ|s−|α|, ∀ξ ̸= 0.

Lemma A.3.2.6. Let s ≥ 0. If a ∈ Ss, then for all multi-indices α, β and (ξ, η) in the cone Γ, defined
in (A.3.1.6), we have

sup
0≤θ≤1

|∂αξ ∂βη a(η + θξ)| ≤ Cα+β |η|s−|α|−|β|.

proof. For α, β ∈ Nn
0 ,

∂αξ ∂
β
η a(η + θξ) = (∂α+β

η a)(η + θξ)θ|α|.

and for (ξ, η) ∈ Γ,
1

2
|η| ≤ |η + θξ| ≤ 3

2
|η|.

The required estimate is established and the proof is complete. Q.E.D.
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A.3.3 Proofs of Lemma A.3.1.2, Theorem A.3.1.1, and Corol-
laries A.3.1.1 and A.3.1.2.

A.3.3.1 Proof of Lemma A.3.1.2 and Theorem A.3.1.1

Proof of Lemma A.3.1.2. Since | · |s ∈ Ss and Lemma A.3.2.6, we are done. Q.E.D.

To prove Theorem A.3.1.1, Corollaries A.3.1.1 and A.3.1.2, we introduce the following notation. For
bilinear operator B, defined by

B(F,G)(x) =

∫
Rn

∫
Rn

eix(ξ+η)b(ξ, η)F̂ (ξ)Ĝ(η)dξdη,

we can define

B≪(f, g) =
∑
k∈Z

B(P≤k−3f, Pkg), B∼(f, g) =
∑
j∈Z

j+2∑
k=j−2

B(Pjf, Pkg).

Obviously, we have the decomposition

B(f, g) = B≪(f, g) +B∼(f, g) +B≪(g, f) (A.3.3.1)

and the symbol b≪(ξ, η) of B≪ is defined by

b≪(ξ, η) =
∑
k∈Z

Ψ̂k−3(ξ)Φ̂k(η)b(ξ, η). (A.3.3.2)

We have the following useful property.

Lemma A.3.3.1. Let s ≥ k ≥ 0 and s1, s2 are non-negative real numbers satisfying

s1 ≤ k, s1 + s2 = s

and let 1 < p, p1, p2 < ∞ satisfy 1/p = 1/p1 + 1/p2. Then the bilinear form B≪(f, g) with symbol of
type (A.3.3.2) with b in the Coifman - Meyer class satisfies

∥B≪(Dkf,Ds−kg)∥Lp(Rn) ≤ C∥Ds1f∥Lp1 (Rn)∥Ds2g∥Lp2 (Rn).

The proof follows from the Coifman - Meyer estimate (A.3.1.7) and we skip it.
Lemma A.3.2.6 implies:

Lemma A.3.3.2. Let s ≥ 0. If a ∈ Ss(Rn), then with as(ξ, η, θ) = |η + θξ|s we have

sup
0≤θ≤1

|∂αξ ∂βη as≪(ξ, η, θ)| ≤ C|η|s−|α|−|β|.

Another useful application of the Coifman - Meyer estimate (A.3.1.7) concerns the bilinear form

B(f, g) = Ds1(Ds2fDs3g). (A.3.3.3)

Lemma A.3.3.3. Let s1, s2, s3, s4, s5 be non-negative numbers satisfying

s1 + s2 + s3 = s4 + s5, s4 ≤ s2
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and let 1 < p, p1, p2 <∞ satisfy 1/p = 1/p1 + 1/p2. Then the bilinear form (A.3.3.3) satisfies

∥B≪(f, g)∥Lp(Rn) ≤ C∥Ds4f∥Lp1 (Rn)∥Ds5g∥Lp2 (Rn).

Proof of Theorem A.3.1.1. Consider the bilinear form B(f, g) = Ds(fg). We have the decomposition
(A.3.3.1). For the term B∼(f, g) we can apply the estimate of Lemma A.3.2.5. Therefore, it is sufficient
to show that

B≪(f, g) =

ℓ−1∑
m=0

Am
s,≪(0)(f, g) +

∑
|α|=ℓ

Tα
≪(∂αf,Ds−ℓg), (A.3.3.4)

where Tα
≪ is a Coifman-Meyer bilinear form

Tα
≪(F,G)(x) =

∫
Rn

∫
Rn

eix(ξ+η)tα≪(ξ, η)F̂ (ξ)Ĝ(η)dξdη

with symbol tα≪(ξ, η) in the CM class supported in {|ξ| ≤ |η|/2}, so it satisfies the estimate

∥Tα
≪(F,G)∥Lp(Rn) ≤ Cp,p1,p2

∥F∥Lp1 (Rn)∥G∥Lp2 (Rn) (A.3.3.5)

for all 1 < p, p1, p2 <∞ with 1/p = 1/p1 + 1/p2.

We can use the Taylor expansion with respect to θ:

as(ξ, η, 1) =

ℓ−1∑
m=0

1

m!
∂mθ as(ξ, η, 0) +

1

(ℓ− 1)!

∫ 1

0

(1− θ)ℓ−1∂ℓθas(ξ, η, θ)dθ

and note that (A.3.1.9) implies
B≪(f, g) = A0

s,≪(1)(f, g)

so the Taylor expansion for as(ξ, η, 1) implies (A.3.3.4) with symbol

tα≪(ξ, η) =
∑
k∈Z

Ψ̂k−3(ξ)Φ̂k(η)

∫ 1

0

(1− θ)|α|−1θ|α|∂αη as(ξ, η, θ)
dθ

(|α| − 1)!
|η|−s+|α|.

An application of Lemma A.3.3.2 shows that tα≪(ξ, η) belongs to the CM class so the Coifman-Meyer
estimate proves (A.3.3.5) and completes the proof of the theorem. Q.E.D.

A.3.3.2 Proof of Corollary A.3.1.1

Let B(f, g) = Ds(fg) − fDsg − gDsf . Then the term B∼(f, g) can be estimated by Lemma A.3.2.5.
So it is sufficient to check the estimate

∥B≪(f, g)∥Lp(Rn) ≤ C∥Ds1f∥Lp1 (Rn)∥Ds2g∥Lp2 (Rn). (A.3.3.6)

The term B≪(f, g) can be represented as

B≪(f, g) = BI
≪(f, g) +BII

≪ (f, g),

where
BI(f, g) = Ds(fg)− fDsg

and
BII(f, g) = −gDsf.
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The symbol of
BI

≪(f, g) = A0
s(1)(P≤k−3f, Pkg)−A0

s(0)(P≤k−3f, Pkg),

can be represented as by the aid of the Taylor expansion

as(ξ, η, 1)− as(ξ, η, 0) =

∫ 1

0

∂θas(ξ, η, θ)dθ

so as in (A.3.3.4) we have

BI
≪(f, g) =

∑
|α|=1

Tα
≪(∂αf,Ds−1g)

with symbol

tα≪(ξ, η) =
∑
k∈Z

Ψ̂k−3(ξ)Φ̂k(η)

∫ 1

0

θ∂αη a(ξ, η, θ)dθ|η|−s+1

in the CM class. Applying Lemma A.3.3.1, we get

∥BI
≪(f, g)∥Lp(Rn) ≤ C∥Ds1f∥Lp1 (Rn)∥Ds2g∥Lp2 (Rn).

The term BII
≪ (f, g) can be estimated by the aid of Lemma A.3.3.1 again, so we get (A.3.3.6) and the

proof is complete.

A.3.3.3 Proof of Corollary A.3.1.2

Let B(f, g) = Ds(fg)− fDsg− gDsf + sDs−2(∇f · ∇g). The term B∼(f, g) can be estimated by using
Lemma A.3.2.5. As in the proof of Corollary A.3.1.1, it is sufficient to show

∥B≪(f, g)∥Lp(Rn) ≤ C∥Ds1f∥Lp1 ∥Ds2g∥Lp2 (Rn). (A.3.3.7)

The term B≪(f, g) can be represented as follows

B≪(f, g) = BI
≪(f, g) +BII

≪ (f, g) +BIII
≪ (f, g),

where

BI(f, g) = Ds(fg)− fDsg + s∇f ·Ds−2∇g,
BII(f, g) = sDs−2(∇f · ∇g)− s∇f ·Ds−2∇g,
BIII(f, g) = −gDsf.

Then

BI
≪(f, g) = A0

s,≪(1)(f, g)−A0
s,≪(0)(f, g)−A1

s,≪(0)(f, g) =
∑
|α|=2

Tα
≪(∂αf,Ds−2g),

BII
≪ (f, g) =

n∑
m=1

s{A0
s−2,≪(1)(∂mf, ∂mg)−A0

s−2,≪(0)(∂mf, ∂mg)}

=

n∑
m=1

∑
|α|=1

sT̃α
≪(∂α∂mf,D

s−3∂mg)
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with symbol

tα≪(ξ, η) =
∑
k∈Z

Ψ̂k−3(ξ)Φ̂k(η)

∫ 1

0

(1− θ)θ2∂αη as(ξ, η, θ)dθ|η|−s+2,

t̃α≪(ξ, η) =
∑
k∈Z

Ψ̂k−3(ξ)Φ̂k(η)

∫ 1

0

θ∂αη as−2(ξ, η, θ)dθ|η|−s+3

in the CM class. Applying Lemma A.3.3.1, we can estimate BI
≪(f, g), BII

≪ (f, g) and BIII
≪ (f, g) and

deduce (A.3.3.7).
This completes the proof.
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Kôkyûroku Bessatsu, B33(2012), 11–27.

[40] L. Grafakos, L. Liu, and D. Yang, “Vector-valued singular integrals and maximal functions on
spaces of homogeneous type,” Math. Scand., 104(2009), 296–310.

[41] L. Grafakos, D. Maldonado, and V. Naibo, “A remark on an endpoint Kato-Ponce inequality,”
Differential Integral Equations, 27(2014), 415–424.

[42] L. Grafakos, A. Miyachi, and N. Tomita, “On multilinear Fourier multipliers of limited smoothness,”
Canad. J. Math., 65(2013), 299–330.

[43] L. Grafakos and S. Oh, “The Kato-Ponce Inequality,” Comm. Partial Differential Equations,
39(2014), 1128–1157.
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[83] T. Runst and W. Sickel, Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear
Partial Differential Equations, Walter de Gruyter, 1996.

[84] H. Sasaki, Hn/2に属する非有界関数(ver 1.04),
http://www.math.s.chiba-u.ac.jp/s̃asaki/008 sobolev.pdf

[85] J.-C. Saut and R. Temam, “Remarks on the Korteweg-de-Vries equation,” Israel J. Math.,
2014(1976), 78–87.

[86] S. Selberg and A. Tesfahun, “Low regularity well-posedness of the Dirac-Klein-Gordon equations
in one space dimension,” Commun. Contemp. Math., 10(2008), 181–194.
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